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Abstract
We explore the effect of laughter perception and response in
terms of engagement in human-robot interaction. We designed
two distinct experiments in which the robot has two modes:
laughter responsive and laughter non-responsive. In responsive
mode, the robot detects laughter using a multimodal real-time
laughter detection module and invokes laughter as a backchan-
nel to users accordingly. In non-responsive mode, robot has
no utilization of detection, thus provides no feedback. In the
experimental design, we use a straightforward question-answer
based interaction scenario using a back-projected robot head.
We evaluate the interactions with objective and subjective mea-
surements of engagement and user experience.
Index Terms: laughter detection, human-computer interaction,
laughter responsive, engagement.

1. Introduction
Engagement is a crucial component of user experience in
human-computer interaction. Social agents need to build a bond
with humans to retain their attention in conversations. Today,
they still suffer to create and maintain the interest of individu-
als both in short and long time periods of interactions. Thus,
understanding engagement and designing engaging agents is a
step towards more naturalistic and sophisticated interactions.

With technological advancement, the robots’ appearances
have become more realistic, they possess more natural text-to-
speech engines and can perform a plethora of complex tasks.
These developments have contributed to abating the differences
between human-robot and human-human interactions. How-
ever, they are still not sufficient for replacing human role in
conversations with robots. Communication between two people
consists of implicit and explicit channels for delivering essential
signals to maintain the interaction as long as both parties desire.
Agents should also be able to perceive, respond and make use
of these signals. In this paper, we concentrate on exploring the
effect of laughter and smile as backchannels in human-robot in-
teraction.

We design an interaction scenario involving two people and
a back-projected robot head. In this scenario, the robot plays
a quiz game with the participants. We conduct two sets of ex-
periments, where the only difference is the mode of the robot
- laughter responsive or laughter non-responsive. In the laugh-
ter responsive mode, the robot utilizes our real-time multimodal
laughter detection module, to perceive laughter, and respond to
it with laughter, or smile (if speaking). Whereas, in the laughter
non-responsive mode the robot does not respond to laughter by
any means.

We evaluate the difference between the two kinds of inter-
actions subjectively and objectively. For subjective evaluation,
we use questionnaires to assess the participants experiences.
For objective evaluations, we measure the level of engagement

of the participants’ in both experiments by using the four con-
nection events - directed gaze, mutual facial gaze, adjacency
pair and backchannel, as described by Rich et al. [1].

2. Related work
Many of the existing studies on engagement have concentrated
on the notion of engagement [2, 3], while the others have pri-
marily focused on its measurement, detection and improvement
in HCI. A recent survey summarizes the issues regarding en-
gagement in human-agent interactions and presents an applica-
tion on engagement improvement in GRETA/VIB platform [4].
Being a thorough survey, this work emphasizes the importance
of engagement in HCI and indicates the growing interest of re-
searchers in the field.

Rich et al.’s work on engagement recognition is one of the
pioneering studies in this area [1], where the authors propose an
engagement model for collaborative interactions between hu-
man and computer. They conduct experiments on both human-
human and human-robot interactions to have insight and eval-
uate their approach. Compared to their earlier work [5], they
present a shorter list of dialog dynamics, which includes di-
rected gaze, mutual facial gaze, adjacency pairs and backchan-
nels. They refer to these four events as connection events (CE)
between user and the robot, and use their timing statistics (min,
mean, max of delays) to compare the engagement levels in two
distinct scenarios, as well as an additional metric referred to as
pace. Pace recapitulates the timing statistics, and it is inversely
proportional to the mean time between connection events. The
idea is that each CE refreshes the bond between human and
robot, and increases the pace metric which is assumed to be
proportional to the engagement level.

The backchannel, defined as a connection event, is an im-
portant aspect of engagement. As one of the social signals, it
is a type of multimodal feedback, defined by Yngve [6] as non-
intrusive acoustic and visual signals provided by listener dur-
ing speaker’s turn. Humans, even unconsciously, respond to
speaker using facial expressions, nodding, smiling back, using
non-verbal vocalizations (mm, uh-huh), or verbal expressions
(yes, right), which are all examples of backchannelling. There
exist several studies which concentrate on backchannel timing
prediction [7, 8, 9, 10], as well as various others addressing
evaluation of backchannel timing such as [11, 12].

We specifically consider laughter as a backchannel signal
in human-robot interaction. There exist other studies which
integrate laughter in HCI and monitor its effect on the user.
However, to the best of our knowledge, none of these studies
evaluates the impact of a laughter responsive agent in terms of
engagement. For example, Niewiadomski et al. experiment
with a virtual agent in a simple interaction scenario with no
verbal communication [13], where subjects watch funny videos
together with a laughter-aware virtual agent which mimics the
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Figure 1: System overview

subjects laughter. The humor experience of the subject is eval-
uated focusing on the quality of the synthesized laughter of the
agent, and its aptness in timing. Another similar work is that of
[14], where the interaction scenario is also non-verbal. The sub-
ject and the virtual agent together listen to some funny music,
and the agent mirrors the subject’s laughter. The experience is
then evaluated utilizing questionnaires. El Haddad et al. exper-
iment with a virtual agent which can predict smile and laughter
based on non-verbal expression observations from the speaker
[15]. Nonetheless, their focus is on accuracy of the laughter pre-
diction, and the naturalness of the synthesized laughter. They
evaluate their system subjectively, using Mean Opinion Score
(MOS).

3. System overview
Our main objective is to analyze the role of laughter to engage
users in human-robot interaction. Hence the robot should be
able to perceive users’ laughter and smiles in real-time and to
respond back using these non-verbal expressions in its dialog
flow. We hypothesize that such an ability of a robot will con-
tribute to the engagement of the user during interactions.

Figure 1 shows the overview of the system. We have a dia-
log management block [16], which takes user speech from mi-
crophones and positions from Kinect as inputs. It then creates
a flow of dialog and gestures according to a rule-based strat-
egy. The laughter detection module is involved with the dialog
flow to trigger responses (laugh or smile) based on the detec-
tion results. All inputs and dialog flow components (produced
gestures, speech etc.) are logged, and then processed so as to
extract CEs and to compute engagement measures.

We employ a question-answer based scenario in which two
subjects participate together and play a game of quiz [16] with
the robot. Basically, the robot starts with a short introduction.
It asks participants’ names and whether they know each other.
The robot then proceeds with the quiz and poses some questions
which are hard to guess but likely to draw attention from par-
ticipants. An example question is ”What color are sunsets on
planet Mars?” and the given options are ”green, blue, pink, or-
ange”. In order to finalize the quiz and the interaction, the robot
keeps score of the correct answers of each participant, and de-
clares the winner as the first to reach 3 points.

We exploit the fact that laughter mimicking by listener is
the most natural response to speaker’s laughter. Therefore, dur-
ing the interaction, when the robot is in its laughter responsive
mode, it utilizes our laughter detection system for laughter de-
tection. It thereby responds to laughter with laughs while lis-
tening, but with smiles while speaking (since it is hard to incor-
porate naturalistic laughter to speech). Whereas, in its laughter
non-responsive mode, the robot does not perform laughter de-
tection, and hence does not respond to laughs.

Figure 2 shows the experimental setup for the interaction
scenario. The robot [17, 18] (Furhat in this study) sits on one
side of the round table. Participants are placed facing towards
the robot. Kinect is on a tripod and able to see both participants’
upper-body and face. Individual microphones are attached to
participants’ collars. Also, one video camera records the whole
scene.

IrisTK platform [16] is used with Furhat robot head, which
provides functionalities, such as speech recognition and dialog
management. On top of these modules, we build a real-time
laughter detection module and engagement measurement meth-
ods, as we next explain in the sequel.
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Figure 2: Experimental setup of the interaction scenario

4. Real-time laughter detection
We have a multimodal scheme for laughter detection in natural-
istic interactions [19, 20]. Audio and facial features are used to
feed the detector. We have developed a method of detection on
continuous audiovisual streams. It basically creates temporally
sliding window on the stream and classifies with SVM whether
the window instance involves laughter or not.

The detection method is trained over a human-robot in-
teraction dataset [21], which includes Kinect v2 data record-
ings. Kinect v2 provides whole body joints and facial landmark
points along with high definition video and audio.

4.1. Audio and facial features

We compute 12-dimensional MFCC features using a 25 msec
sliding Hamming window at intervals of 10 msec. We also in-
clude the log-energy and the first order time derivatives into the
feature vector. The resulting 26-dimensional dynamic feature
forms the audio features.

Kinect can provide 1347 vertices of face model. We capture
only 4 of them, corresponding to lip corners and mid points
of lips, which roughly represent the lip shape. We keep these
points in 3D coordinates to create a facial feature vector.

4.2. Summarization and classification

Support vector machines (SVM) receive a temporal window of
statistical summarization of the short-term features to perform
binary classification for laughter and non-laughter classes. We
also use probabilistic output of SVM classification for late fu-
sion of modalities and setting different thresholds. The classi-
fication task is repeated for every 250 msec over overlapping
temporal windows of length 750 msec.



4.3. Real-time implementation

The implementation of laughter detection module is coded in
C++ by using Kinectv2 libraries on Microsoft Windows. The
process is designed to have two worker threads to handle data
acquisition and feature extraction of modalities (audio and fa-
cial) and a master thread which fuses the outputs of the worker
threads and produces the decision output.

In audio worker thread, the audio stream (16kHz sampling
rate) is acquired in chunks of 256 samples. Hence, a two
stage sliding window operation is performed in hierarchy. First,
MFCC features are extracted over the audio buffer. The ex-
tracted MFCC features are then buffered and a sliding classifi-
cation window is applied.

The video worker thread is similar to the audio thread but
with a simpler feature extraction process. Kinect provides each
visual frame (body, face, video etc.) with at most 30 fps. How-
ever, frames have their special time stamps rather than having
fixed sampling period with (1/30) sec. The video thread grabs
lip vertices each time a new frame arrives. Feature vectors are
buffered where a sliding window runs over in order to have sta-
tistical summarization and SVM classification.

5. Engagement measurement
We implement the methods proposed in [1] in order to measure
engagement, which is applicable to face-to-face collaborative
HCI scenarios.

Rich et al. have defined 4 types of ’connection events’
(CEs) as engagement indicators:

• Directed gaze: Sharing the same location for both par-
ticipants’ gaze

• Mutual facial gaze: Face-to-face eye contact event
• Adjacency pair: The minimal overlap or gap between

utterances (different speakers’) during turn taking
• Backchannel: Backchanneling during other speaker’s

turn
We mostly follow the same methodology as [1] but with

one small modification as we descibe in the following. In [1],
there is only one participant interacting with the agent, and the
directed gaze event is defined to happen when the agent and
the participant look together at a nearby object related to the
interaction. However, in our experiments, we have no objects
of interest but an additional participant. Hence, when the robot,
as a ’connection event initiator’, changes its gaze direction from
one participant to the other, this action initiates a ’mutual gaze’
for one participant and a ’directed gaze’ for the other.

In our experiments, CEs are extracted through the logged
dialog components and sensory data (from Kinect). The ex-
tracted CEs are then used to calculate a summarizing engage-
ment metric called ’mean time between connection events’
(MTBCE). MTBCE measures the frequency of successful con-
nection events. Basically, MTBCE in a given time interval T is
calculated by T / (# of CEs in T ). As MTBCE is inversely pro-
portional to engagement, similarly to [1], we use pace = 1/MT-
BCE to quantify the engagement between a participant and the
robot. The pace measure is calculated over a range of differ-
ent interaction durations such as the first 1 minute, the first 2
minutes and so on.

6. Experimental work and evaluation
In the experiments, we used Furhat [17, 18] as a conversational
robot head. Furhat has the advantage of physical existence in

Table 1: Interaction time statistics of the experiments

Interaction Time (sec)
total # min max mean

Laughter Resp. 10 138.0 296.6 222.1
Laughter Non-Resp. 10 126.2 515.1 267.8

the scene as well as having ability of efficient facial animation
production.

At the beginning of each experiment, participants are
briefly informed about the experiment. They are told that they
will simply play a quiz game with the robot. The operator ex-
plains the roles of the participants and the robot in the game
without biasing them. Once participants are ready, they are left
alone in an isolated experiment room.

In total, 20 experiments are performed in a randomly se-
lected mode: laughter responsive or laughter non-responsive. A
total of 10 experiments are conducted in each of the modes.
Each experiment involves two people, therefore the engage-
ment is evaluated over 40 subjects (28 male, 12 female, mean
age: 25.9). The experiment ends when one of the participants
reaches 3 points in the quiz (3 correct answers). The average
time of an experiment is 4 minutes and 5 seconds. Table 1 indi-
cates the statistics of interactions.
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Figure 3: Average pace values for laughter-responsive (blue)

and laughter non-responsive modes (red) over increasing inter-

action durations.

Figure 3 shows the average pace of the connection
events over subjects in laughter responsive and laughter non-
responsive mode of the robot. For example, the pace in the
n-th minute is the average pace realized in the period from the
beginning to the n-th minute of the interactions. We have calcu-
lated the pace for the first 4 minutes, as it is approximately the
average duration of an interaction. We observe that the calcu-
lated pace values are significantly different between two modes
for all interaction durations, indicating a considerable increase
in engagement of a participant when interacting with a laugh-
ter responsive agent. We note that the pace samples belong-
ing to the two modes exhibit statistically significant differences
(p << 6e� 10) when 2-sample t-test is applied. Also, the dif-
ference between the pace curves starts increasing after the 3-rd
minute. This may be due to the observation that, after a warm-
up period, participants tend to lose or increase their engagement
according to the experiment mode.

For subjective evaluation, the subjects were required to fill



Table 2: Questionnaire items and mean scores over the laughter responsive and laughter non-responsive modes. Score scale: Strongly

Agree (2), Agree (1), Undecided (0), Disagree (-1), Strongly Disagree (-2)

Responsive Non-Responsive
# Questionnaire Items Mean Std Mean Std
1 I liked the interaction with the robot. 1.50 0.60 1.40 0.60
2 The interaction was entertaining. 1.65 0.59 1.45 0.76
3 I felt boredom at times during the interaction. -1.35 0.59 -1.00 1.03
4 The robot was responsive to my emotional mood. 0.65 0.75 -0.35 0.67
5 The interaction felt natural. 0.65 0.93 0.20 0.89

a questionnaire after their interaction. Table 2 shows the five
questions of the survey. We use a 5-point likert scale: Strongly
Agree (2), Agree (1), Undecided (0), Disagree (-1), Strongly
Disagree (-2) for each of the questions. To keep the subjects
unbiased, even in the questionnaire, the fourth question implic-
itly asks if the users were aware of the robot’s laughter response.
The Mann Whitney test for the fourth question, gives a statisti-
cally significant (p = .0002) difference between the laughter
non-responsive and laughter responsive samples, which indi-
cates that the users were aware of the laughter responsiveness
of the robot during interaction. Question 5 also gives a statisti-
cally significant (p = .05) difference between the two samples,
an evidence that laughter integration in HCI makes the inter-
action more naturalistic. The answers to other questions were
not statistically different amongst the two samples. Nonethe-
less, this is expected because these questions are not intended
to discern between the two modes of the robot, but rather to get
feedback about the interaction scenario. Furthermore, since for
most of the participants interacting with the robot was a first-
time experience, they underwent the novelty effect. Simply put,
even without laughter feedback from the robot, they enjoyed the
interaction due to its novelty. Consequently, there is no statis-
tically significant distinction for the first three enjoyment mea-
suring questions.

Figure 4 plots the pace metric for each CE separately. All
the CEs, except the mutual gaze (Figure 4b), yield higher pace
curves for the robot’s responsive mode. In the interactions, we
observe the main reason behind the mutual gaze event loss: We
discover that the majority of the participants, when amused,
look whether the other participant is entertained, as well. In our
scenario, this especially occurs when they are told their answer
was wrong. In these occasions, the robot immediately shifts the
attention from the current participant to require an answer from
the other participant. Nonetheless, its initiation of mutual gaze
event results in failure because the two participants are looking
at each other.

Two strong tendencies of the responsive mode are observed
in backchannel and directed gaze CEs. Figure 4d shows in-
crease in the number of backchannel events, which are mostly
laughter and smiles, in the second half of the interactions. Pace
curves for the directed gaze events yield a decreasing trend for
both modes, but responsive mode sustains higher pace values.
This trend could be due to the participants’ experience with
Furhat. At the beginning of the experiment, participants are
amazed when Furhat shifts his attention from one to the other
participant by head and eye movement. Hence, participants tend
to have successful directed gaze events by looking at the other
participant when Furhat does so. However, participants get ac-
quainted with these attention shifts with time, which might be
the cause of the decreasing trend of the pace for directed gaze
events.
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Figure 4: Average pace values using individual CEs: (a)

Directed Gaze, (b) Mutual Gaze, (c) Adjacency Pair, (d)

Backchannel

7. Conclusion
In this paper, we evaluated the effect of laughter in terms of en-
gagement and user experience in human-robot interaction. In an
interaction scenario with two people and a back-projected robot
head, we experimented with two modes of the robot, laughter
responsive and laughter non-responsive. In the laughter respon-
sive mode, the robot responds to subjects’ laughter by laughter
or smile, whereas in laughter non-responsive mode the robot
does not respond to any laughter at all. We measure the engage-
ment of the participants in two sets of experiments, objectively
by utilizing the four connection events directed gaze, mutual
gaze, adjacency pair and backchannel. Our results indicate that
the laughter responsiveness of the robot contributes to engage-
ment of the participants. We also evaluate the user experience
with a questionnaire, which likewise shows promising effects of
laughter integration in an HCI system.
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