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Figure 1: A simplified overview of the proposed method. Providing adaptive decision support through reinforcement learning
for optimizing human-centric objectives while accounting for human-centric and other contextual factors in human-AI
decision-making.

ABSTRACT
Imagine if AI decision-support tools not only complemented our
ability to make accurate decisions, but also improved our skills,
boosted collaboration, and elevated the joy we derive from our
tasks. Despite the potential to optimize a broad spectrum of such
human-centric objectives, the design of current AI tools remains
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predominantly focused on decision accuracy alone. To address this
gap, we propose offline reinforcement learning (RL) as a general
approach for modeling human-AI decision-making to optimize
human-AI interaction for diverse objectives. RL enables optimizing
various objectives in AI-assisted decision-making by tailoring and
adaptively providing decision support to humans — the right type
of assistance, to the right person, at the right time. We instanti-
ated our approach with two objectives: human-AI accuracy on the
decision-making task and human skill improvement (i.e., learning
about the task) and learned decision support policies from previous
human-AI interaction data. We compared the optimized policies
against several baselines in AI-assisted decision-making. Across
two experiments (N = 316 and N = 964), our results consistently
demonstrated that people interacting with policies optimized for
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accuracy achieve significantly better accuracy — and even human-
AI complementarity — compared to those interacting with any
other type of AI support. Our results further indicated that human
learning was more difficult to optimize than accuracy, with partic-
ipants who interacted with learning-optimized policies showing
significant learning improvement only at times. Our research (1)
demonstrates offline RL to be a promising approach to model the
dynamics of human-AI decision-making, leading to policies that
may optimize human-centric objectives and provide novel insights
about the AI-assisted decision-making space, and (2) emphasizes
the importance of considering human-centric objectives beyond
decision accuracy in AI-assisted decision-making, opening up the
novel research challenge of optimizing human-AI interaction for
such objectives.

CCS CONCEPTS
• Human-centered computing→ Systems and tools for inter-
action design; Interaction paradigms; Empirical studies in
HCI.
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1 INTRODUCTION
AI-powered assistance is increasingly woven into our decision-
making with the promise of improving the quality and efficiency
of our decisions. However, beyond decision quality and efficiency,
how will this assistance affect us — our skills and growth, the joy
we derive from our tasks, the way we collaborate with others, or
the agency we feel in the workplace? The emerging human-AI
dyads form sociotechnical systems that produce both tangible (e.g.,
decisions) and socio-psychological outcomes [68, 80]. Decades of
research in work design have highlighted and empirically demon-
strated that human-centric socio-psychological outcomes, like com-
petence or autonomy, are crucial mediators of motivation, perfor-
mance, and overall well-being in the workplace [24, 34, 56, 61, 62].
Yet, the present design and development of AI decision aids has
been narrowly fixated on improving only the accuracy of the deci-
sions, largely neglecting other human-centric objectives that the
decision-maker may value and find motivating in their work (e.g.,
skill improvement, autonomy, social belonging [25]). While im-
mense effort has been invested in the development of human-AI
interaction techniques to enhance accuracy (e.g., [11, 23, 55, 57]),
almost no research has considered or explicitly studied how to opti-
mize human-centric objectives in AI-assisted decision-making. We
posit that as AI assistance becomes integral to our daily tasks and
workflow, it is essential that we maintain control over its both short-
and long-term impact on decision-maker’s well-being and quality

of life. To guide this impact effectively, we must account for the
human decision-maker and devise methods and techniques to ex-
plicitly optimize for human-centric objectives along with accuracy
in AI-assisted decision-making.

But why may the existing decision support paradigm be insuffi-
cient in optimizing such human-centric objectives? First, even with
decision accuracy as the primary objective, the design of current AI
decision-support tools generally provides a fixed type of support
— like an AI recommendation and an explanation — regardless of
the specific decision, person, or context. Meanwhile, alternative
human-AI interaction approaches are being developed (e.g., cogni-
tive forcing [11], evaluative AI [55], self explanation [23], explana-
tion without decision recommendation [31]). Additionally, there is
growing evidence that the choice of the optimal human-AI interac-
tion approach — even when considering only accuracy as the ob-
jective — depends on multiple contextual factors, including factors
specific to a decision instance (such as a person’s knowledge and
confidence related to particular a decision instance) as well as AI’s
confidence [59]. However, we do not yet have fully systematized
knowledge to indicate what type of interaction should be presented
under what circumstances. Considering multiple objectives and
importance of context in AI-assisted decision-making, we believe
that AI support needs to be dynamic, changing in response to con-
text and individuals while optimizing decision accuracy and other
specified human-centric objectives. For instance, such dynamic as-
sistance may prevent human overreliance on AI by withholding AI
assistance in cases when the AI is uncertain, rather than offering
recommendations and explanations for every decision task. When
focusing on improving human skills, it may show partial support
(e.g., only explanations) instead of providing decision recommenda-
tions (“the answer”) to encourage deeper cognitive engagement and
learning [31]. Or envisioning futures in which we seek to enhance
collaboration and relatedness in the workplace [24], such dynamic
assistance may even at appropriate times advise decision-makers to
seek insights from a more experienced colleague, or to form a team
to tackle complex decision-making scenarios that an individual is
uncertain about.

To enable dynamic AI support that adapts based on the context
and objectives, in this paper, we cast the problem of human-AI
decision-making as a Markov Decision Process and learn policies
that optimize different objectives with offline reinforcement learn-
ing (RL). We propose RL as a particularly appealing approach for op-
timizing human-centric objectives in AI-assisted decision-making
due to its ability to model objectives that are sparse or harder to cap-
ture (like human learning or task enjoyment) as part of the reward,
to capture human-centric and contextual factors (e.g., human’s skill,
load, motivation, AI’s uncertainty) as part of the state space, and
adapt the support with an action space comprised of different types
of human-AI interaction techniques effective for specific contexts.
Our proposed approach uses offline RL to derive optimal support
policies from existing datasets of human-AI decisions with various
AI assistance. Our proposed approach is highly customizable, with
the potential to optimize various objectives in AI-assisted decision-
making by appropriately crafting the reward and constructing the
state and action spaces. For this paper, we focus on optimizing deci-
sion accuracy and human learning about the task as two important
objectives to optimize in AI-assisted decision-making, and examples
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of dense (accuracy) and sparse (human learning) rewards in our pro-
posed approach. Drawing on insights from prior work, we construct
(i) an action space with four different assistance types that may
be effective to optimize these two objectives and (ii) a state space
that, along with relevant contextual factors (e.g., AI uncertainty),
includes human-centric factors and individual differences, such as
people’s Need for Cognition (NFC). NFC, a stable personality trait
indicating a person’s inclination towards cognitively demanding
activities, plays a crucial role in determining how likely a person is
to engage with AI support [11, 31], thereby influencing the effec-
tiveness of different human-AI interaction techniques to achieve
objectives that require cognitive engagement (e.g., human learning).

We first conducted a data collection study (N=142) in which
participants made sequential decisions related to an exercise pre-
scription task. In the data collection study, participants interacted
with an exploratory decision-support policy that sampled AI as-
sistance types uniformly. From these interaction data, we applied
Q-learning to learn policies that optimized accuracy (immediate ac-
curacy on the task), human learning (accuracy on post-intervention
questions), or a combination of both. We conducted two types of
evaluations of our approach: a computational evaluation of the op-
timized policies, and two studies with human-subjects interacting
with the optimized policies and various baselines. First, our compu-
tational analysis and interpretation of the learned policies revealed
that optimal policies are different, in meaningful ways and in line
with current understanding of the space, for different objectives,
contexts, and people with different levels of Need for Cognition
(NFC). Examining the policies further led to discovering new in-
sights about the AI-assisted decision-making space. Specifically, we
discovered that participants low in NFC are unlikely to request AI
assistance when that assistance is offered on demand. Second, our
results from the first (N=316) and second (N=964) human-subject
studies demonstrated that policies optimized for accuracy consis-
tently, and significantly improved the immediate decision accuracy
of both NFC groups compared to various baselines and learning-
optimized policies. On the other hand, the learning-optimized policy
led to significantly more learning than the accuracy-optimized pol-
icy only for the group low in NFC and only in the first experiment.
Our results indicate that it was more challenging to optimize for
learning compared to immediate decision accuracy. We believe this
is partially due to the weakness of the signal and the lack of ac-
tions (i.e., human-AI interaction techniques) that robustly improve
learning.

In summary, this paper makes the following contributions:

• We introduce and illustrate the potential of offline RL as a
promising method for modeling the complexities of human-
AI decision-making, allowing the development of decision-
support policies that optimize multiple human-centric objec-
tives in AI assisted decision-making.
• Our instantiation of the proposed approach is consistently
successful in improving joint human-AI accuracy, achieving
even human-AI complementarity, but only partially success-
ful in improving human learning.
• We further demonstrate the potential of offline RL as a means
to discover insights about the AI-assisted decision-making
space.

• We contribute new evidence demonstrating the significance
of individual differences in cognitive motivation (i.e., Need
for Cognition), as a factor to be taken into account when
designing AI systems for decision support.
• Our work opens up a novel research challenge of design-
ing novel paradigms, explanations, and human-AI interac-
tion techniques that optimize learning and other human-
centric objectives alongwith decision accuracy in AI-assisted
decision-making.

2 BACKGROUND & RELATEDWORK
2.1 Human-AI Accuracy in AI-assisted

Decision-making
2.1.1 Towards Calibrated Reliance on AI in AI-Assisted Decision-
Making. AI is becoming increasingly integrated into decision-making
processes, with the assumption that it will enhance decision-makers’
abilities by combining their expertise with AI advice to improve de-
cision outcomes. However, mounting evidence shows that decision-
makers struggle to incorporate AI recommendations into their deci-
sions, often either over-relying or under-relying on AI, even when
explanations are provided [5, 7, 11, 18, 32, 51, 60, 63, 70, 70, 84].

Recognizing this challenge, substantial efforts have been made
to characterize the types of explanations or indicators of uncer-
tainty [18, 38, 50, 66, 78, 84, 85], situations (e.g., the cost-benefit
of engaging with AI [78], time pressure [15, 74]) and other set-
tings [33, 44, 65] in which people resort to over- or under-relying
on AI and devise interventions that promote calibrated reliance and
effective utilization of AI support. These research endeavors can
be broadly categorized into pre-task and in-the-moment interven-
tions. Pre-task interventions often involve training or onboarding
sessions designed to help individuals construct a mental model
of AI [40, 57, 58, 64], develop a self-mental model related to the
task [35], or increase human agency by granting them control over
input feature selection and algorithmic assistance [20, 43]. In-the-
moment interventions, on the other hand, consist of interventions
such as explanation [83], interaction [11], meta-information [12, 57],
and paradigms [55] that promote effective AI support use during
the decision-making process. Some of these interventions can be
broadly grouped into evaluation-soliciting decision support, such as
Miller’s proposed Evaluative AI paradigm, which presents evidence
both for and against a decision after the human makes an initial
decision [55]. Other approaches involve presenting explanations
in the form of questions rather than statements [23], or decision
support that incorporates evidence from the literature and presents
it alongside AI advice [83]. Related to our work, a nascent branch
of in-the-moment interventions includes adaptive strategies that
learn to present decision-makers with AI support only when it is
deemed beneficial. To identify such instances, these adaptive inter-
ventions leverage a model of human decision-makers [52, 59] or
learn decision policies with contextual bandits [9]. These strategies,
which optimize whether or not to provide support for optimiz-
ing immediate accuracy, seem promising for effective AI-assisted
decision-making: both Noti and Chen [59] and Ma et al. [52] report
human-AI complementary team performance.
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2.1.2 The Impact of Different AI Assistance on (Over)Reliance and
Cognitive Engagement. Studies consistently show that simple ex-
plainable AI (SXAI), in which people are provided with AI recom-
mendations and explanations, induces overreliance on AI [7, 11, 32].
Previous research in AI-assisted decision-making has put forth that
this overreliance on AI stems from superficial engagement with
the information provided [10, 11, 31]. People overrely on AI recom-
mendations as they fail to cognitively engage with the presented
AI suggestion and explanation. Research from learning sciences
has long established that cognitive engagement with information
is essential for learning [69]. As such, AI assistance types that in-
duce overreliance will potentially hurt cognitive engagement and
subsequently learning. Whereas AI assistance types that induce
cognitive engagement will help people critically evaluate infor-
mation and disregard incorrect AI suggestions, resulting in both
increased learning and reduced overreliance.

One assistance type that previous work suggests enhances cogni-
tive engagement is providing people with AI explanation only [31].
The underlying hypothesis is that providing people with AI expla-
nations only, as opposed to showing them AI recommendations and
explanations, invokes more cognitive engagement because people
have to make the cognitive jump of getting to a final decision from
the given information rather than being “served the answer”. An-
other form of AI support that previous work has shown to reduce
overreliance, and possibly induce cognitive engagement, is letting
people choose whether or when they want to see AI recommen-
dations and explanations (i.e., on demand) [11]. By tapping into
people’s curiosity for viewing the AI advice and allowing them
control over when or whether to view the AI suggestion, such
assistance may elicit cognitive engagement with the AI-provided
content. We included these two designs in our study, as assistance
types that had the potential to support cognitive engagement, and
thus, human learning about the domain.

2.2 Human Competence, AI, and the Future of
Work

The anticipated large-scale deployment of AI-powered decision aids
is likely to transform many jobs. There are moral and economic
reasons to look for ways to deploy these technologies in a man-
ner that complements workers and enhances their abilities, rather
than diminish their roles or replace them without offering new
opportunities [1, 72]. However, many of the current deployments of
AI-powered decision support systems are likely to negatively alter
the existing workplace dynamics. For example, when workers rely
on one another for help with difficult decisions, such help typically
results in incidental learning that enables workers to develop their
skill over time [8]. In fact, some researchers argue that a large frac-
tion of learning that occurs in organizations happens via informal
channels such as incidental learning [53, 54] and such learning is
essential not just for workforce development but also for worker
well-being [24]. However, receiving help from systems that offer
a decision recommendation accompanied by an explanation does
not seem to result in incidental learning [31]. Instead, it can lead
workers to incorrectly increase their confidence in their ability to
perform similar tasks in the future [28, 29].

Further, as AI increasingly assists knowledgeworkers in decision-
making by providing decision recommendations, a critical question
arises: how will such assistance affect decision-makers’ work mo-
tivation in the long term? Self-determination theory (SDT) — a
macro theory for understanding human motivation — may provide
insights into how AI support systems may affect decision-makers’
long-term motivation in the workplace [24]. Originating from stud-
ies on intrinsic and extrinsic motivations and subsequently broad-
ening its scope to encompass investigations in areas such as work
organizations and various aspects of daily life, SDT identified com-
petence as one of the three psychological needs which mediated
workers’ performance and well-being in the workplace. Compe-
tence demonstrates an individuals’ desire to be efficient and adept
in their work environment, becoming prominent in the inclina-
tion to investigate and interact with one’s surroundings and to
undertake demanding tasks as a means to evaluate and enhance
one’s abilities. Meanwhile, the current design of AI support with
recommendation and explanation (SXAI) may be inadvertently un-
dermining decision-makers’ competence. While the longitudinal
impact that SXAI has on competence is yet to be studied, evidence
from automation [22] and a recent study in AI-assisted decision-
making [31] suggest that decision recommendations may hinder
decision-makers’ learning and skill improvement. Given the critical
standing of competence in workers’ motivation, well-being, and
performance, we posit that supporting workers’ skill improvement
and knowledge acquisition (along with their decision accuracy) is
a critical human-centric objective for the design of AI for decision
support. While reinforcement learning has been applied in edu-
cational settings to learn personalized curricula [27], to the best
of our knowledge, our work is the first endeavor to learn interac-
tive policies that optimize decision-makers’ learning in sequential
decision-making tasks.

2.3 Need for Cognition
Need for Cognition (NFC) is a stable personality trait that captures
how likely a person is willing to engage in non-required cognitively
demanding activities [14]. In other words, it reflects a person’s
general cognitive motivation. Across, numerous fields such as skill
acquisition, processing of information in advertising and in health
communication, or web usage, there is consistent evidence that high
need for cognition is associated with seeking out more information
and processing that information more deeply [17, 49, 71, 77, 79,
82]. In HCI literature, there is also initial evidence that people
high in NFC are more likely than those with low NFC to exert
cognitive effort when interacting with complex digital systems and
to benefit more from the more complex features [16, 30, 77]. In
the area of AI-supported decision-making, previous work found
that compared to individuals with low NFC, those with high NFC
make better decisions [11] and benefit more from novel human-AI
interaction techniques such as cognitive forcing [11] or receiving
only explanations without decision recommendations [30]. For
those reasons, we identified need for cognition as a particularly
relevant dimension of individual differences.
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2.4 Offline Reinforcement Learning
Reinforcement learning (RL) is a popular approach to designing
intelligent systems that learns by interacting with an environment,
and can be divided into two categories based on the data collection
strategy: online and offline RL [73]. Online RL entails learning opti-
mal policies through direct interaction with the environment, either
in the real world orwithin a simulated setting, in real-time.Whereas,
offline RL involves learning optimal policies from a previously-
collected interaction dataset. One of the main advantages of online
RL is its ability to adapt to changes in the environment and to learn
in real time, making it well-suited for applications that require
continuous adaptation. Online RL has been employed in various
applications of user interfaces (e.g., menu selection [47], interface
adaptation [76], visual search [19], typing [37]) in which policies
are typically learned by interacting with a computational model or
simulation of the user behavior. Online RL with real users (i.e., in a
real-world environment) can be risky (due to exploratory actions
taken in real time), computationally expensive (especially in time-
constrained settings), and data-intensive, with data collection in
the real world often being costly. Offline RL, on the other hand, is
safer and less computationally expensive, as it learns from a fixed
dataset before the policy is deployed. However, offline RL may not
generalize well to new environments (such as when parts of the
environment are not sufficiently explored in the offline training
dataset) [46]. We opted learning policies from actual human-AI
interaction data as opposed to simulations. With faithful compu-
tational models or simulators of human-AI interaction, learning
policies with simulated data would also be possible. However, our
understanding of human-AI decision-making as a field is still in
its infancy, therefore, any assumptions baked into a computational
model may likely turn to be incorrect, and thus, yield flawed poli-
cies (e.g., One such assumption was that explanations would help
people calibrate their reliance on AI; they generally do not [7].).
Because of the real-world constraints and cost of employing online
RL for crowdsourcing studies with actual users, we chose an offline
RL setup and collected data accordingly. We learned our policies
using Q-Learning on data that was previously collected using an
exploratory policy.

Q-Learning [81] is a prominent off-policy algorithm in RL for
data collected in an offline setting. It estimates the expected long-
term reward of each state-action pair (the “Q-value”) in the RL
environment. Q-learning estimates a state-action pair’s Q-value
by iteratively updating it based on the observed reward and the
estimated value of the next state. Once Q-learning converges, the
optimal policy is the action with the highest value for each state.
One of the key advantages of off-policy algorithms is that they
can learn from data collected using any policy, which allows the
agent to learn from potentially suboptimal but diverse behaviors.
For example, collecting data using an exploratory policy can help
to prevent the agent from getting stuck in suboptimal behavior and
to learn from potentially rare but valuable experiences.

3 APPROACH, SETTING & PROBLEM
FORMULATION

3.1 Approach
In this work, we sought to build computational models that dy-
namically select interactions based on (1) the desired objectives of
AI-assisted decision-making, (2) the individual differences among
the decision-makers, and (3) the relevant contextual factors. For
this paper, the two objectives we chose to optimize for were peo-
ple’s immediate decision accuracy and their longer-term learning
about the task (as measured by their accuracy on distal tasks where
they receive no AI support). The individual difference as a relevant
human-centric factor for which we personalized was people’s Need
For Cognition (low vs. high), drawing on results from prior work
that have shown it to be an important predictor of engagement with
different forms of AI support [11, 31]. Informed by previous work
discussed above, the contextual factors we considered were the type
of decision-making instance, AI’s uncertainty, decision-maker’s
competence, and knowledge related to the concept in question.

Our setting was a sequential decision-making task, in which the
same individual made a large number of decisions in the presence of
an AI-powered decision support system. On any particular decision
task instance, the decision support system could support the human
decision-maker using one of several methods (no support, showing
a decision recommendation with an explanation, showing just an
explanation but offering no decision recommendation, or allowing
the person to request support on demand), each with a different
possible impact on a person’s decision performance in the moment
and on their learning about the task domain. We formulated the
problem of personalizing AI support as a Markov Decision Process,
employing reinforcement learning (RL) algorithms to learn optimal
policies that select sequences of interactions by accounting for the
context and individual differences when optimizing the desired
objectives (See Section 3.3).

Our work was guided by the following three broader hypotheses
about adaptive support in AI-assisted decision-making which we
further broke down into specific hypotheses in subsequent sections:

(1) Optimized policies will result in human performance on
the target objectives (i.e., accuracy and learning) that is as
good or better than the performance achieved with baseline
policies that do not consider contextual factors.

(2) People with different levels of Need for Cognition (NFC) will
benefit from different types of AI assistance for objectives
that require cognitive engagement (i.e., learning).

(3) For each group of people based on their level of NFC, policies
optimized for a target objective (i.e., accuracy or learning)
will result in better human performance on that objective
than policies optimized for another objective.

3.2 Setting: Exercise Prescription
Decision-Making Task

Figure 2 depicts an example of the decision-making task. We aimed
to create a decision-making task that would be accessible to laypeo-
ple on crowd-sourcing platforms, while also inducing similar cogni-
tive challenges as high-stakes decision-making tasks such as those
encountered in clinical decision-making. To accomplish this, we
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Which set of exercises is better suited for Daniel?

Daniel wants to increase flexibility and lose weight. He is 31 years old and works as a cook. 
His current engagement in physical activity is low. He is obese. He enjoys individual and 
indoor activities. He also has access to a gym.

By taking into account the information below determine the exercise set that is better suited for the person in question.

(a) Stimulus

• pilates
• tai chi, qi gong
• yoga

• running
• general dancing
• rope skipping

I would suggest:
Set 1 Set 2

AI suggestion

Reason: pilates supports flexibility goals

The AI suggests this set is better suited for Daniel

(b) Recommendation and explanation

• pilates
• tai chi, qi gong
• yoga

• running
• general dancing
• rope skipping

The AI has some remarks that may assist you 
in making the decision:

pilates supports flexibility goals

I would suggest:
Set 1 Set 2

(c) Explanation only

• pilates
• tai chi, qi gong
• yoga

• running
• general dancing
• rope skipping

I would suggest:
Set 1 Set 2

Click here to see the AI’s suggestion

(d) On demand

Figure 2: An example of the exercise prescription decision-making task with different types of AI assistance (i.e., actions).
Participants were assisted in choosing between the two sets of exercises as depicted for different conditions. In the No-AI
condition (not shown) participants were not provided with any AI assistance.

teamed up with a kinesiology expert (also a co-author of this paper)
and created decision instances for an exercise recommendation
task. The task involves selecting the most suitable of two exercise
sets for a (fictional) person based on their description, goals, and
preferences. Exercise recommendation as a decision-making task
is accessible to a broad audience, yet poses similar challenges to
treatment selection in clinical settings. When choosing a treatment,
clinicians weigh various factors such as the patient’s condition,
treatment preferences, side-effect tolerance, and constraints. Sim-
ilarly, in exercise prescription, each exercise type may interact
differently with the person’s goals, health factors, preferences, ca-
pabilities, or resources.

We generated 44 vignettes of fictitious people by randomly sam-
pling their demographics (age, gender, BMI, physical activity level,
occupation, smoking status) and accordingly manipulating the
following six factors which were deemed important for exercise
prescription by the expert: (1) their maximal or target intensity
(based on demographics), (2) their exercise goal (e.g., building mus-
cles, weight loss, flexibility), (3) their exercise preference (e.g., in-
door/outdoor, group/individual), (4) their resource availability (e.g.,
access to a swimming pool), (5) their medical condition if any (based
on their age and gender), and (6) their susceptibility to experience
adverse events during the exercise (based on their age and medical
condition).

To build an exercise repository from which to recommend ex-
ercises to the fictitious people, we curated a list of 60 leisure time
exercises from a comprehensive compendium which consisted of
physical activities ranging from different exercises (e.g., sports) to
everyday activities (e.g., housework, occupational activities) [3].
Given a fictitious person and the list of exercises, the expert se-
lected a list of optimal and a suboptimal exercises for the person.
The optimal and suboptimal choices differ substantially in at least
one of the four concepts (intensity, goal, medical condition, and
safety), which rendered the optimal exercise set choice superior to
the suboptimal choice. For example, for a fictitious person whose
goal is to increase flexibility, optimal exercises such as pilates and
yoga would account for their goal, while suboptimal choices such
as running or rope skipping may fit their other needs but would not
support their goal.

Generating explanations. In order to generate effective expla-
nations, we carefully crafted them to highlight the specific concept
of one of the exercises that resulted in one exercise set being more
optimal than the other. Thus, if one set of exercises was superior
to the other due to the medical condition, the explanation would
highlight the feature of one of the exercises in the superior set that
makes it suitable for the person in question. For example, if the
person in question had osteoporosis and the superior set included
low-impact exercises such as swimming, the explanation would take
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the form: swimming is suited for people with osteoporosis because it
is low-impact.

Generating incorrect AI recommendations. Our experiment
aimed to recreate realistic scenarios in which an AI model assisting
individuals during decision-making might not always be accurate.
To simulate such situations, we used a subset of the questions (25%
for the data collection study and 28.6% for the evaluation study)
in which the AI assistance presented the suboptimal choice as the
recommendation and generated a correct but unhelpful explana-
tion. The explanation highlighted an arbitrary concept for which
the suboptimal exercise was superior to the optimal exercise. This
approach allowed us to test participants’ ability to recognize the
suboptimal concept and make a sound decision despite the explana-
tion provided. For example, for the same fictitious person as before
whose goal was to increase flexibility, optimal exercises such as
pilates and yoga would account for their goal, while suboptimal
choices such as running or rope skipping may fit their other needs
but would not support their goal. An unhelpful explanation of the
incorrect AI suggestion would be: running maximizes the intensity
the person is capable of exerting.

3.3 Problem Formulation
Our goal was to optimize for accuracy on the current task instance
as a proximal outcome (dense reward), and human learning about
the task domain as a distal outcome (sparse reward). To achieve this
goal, we formulated the problem of choosing the decision support
method for a specific task instance as a reinforcement learning
problem.

Let the Markov Decision Process (MDP) be defined by the tuple
(S,A,T ,R, 𝛾) where S is the state space, A the action space, T :
S × A → Δ(S) is the probability transition function, R is the
reward, and 𝛾 corresponds to the discount factor. A policy 𝜋 :
S ×A → [0, 1] assigns each state 𝑠 ∈ S a distribution over actions
𝜋 (𝑎 |𝑠), where 𝑎 ∈ A. In our setting,S,A,R are designed as follows:

• State. In order to capture the current state of the human-
AI decision-making dyad, we consider the concept under
investigation, AI’s accuracy, and the decision-maker’s level
of knowledge and their propensity to engage in analytical
thinking. Specifically, at each time step 𝑡 , we represent the
state as 𝑠𝑡 = [𝑛𝑓 𝑐𝑡 , 𝑐𝑡 , 𝑢𝑡 , ℎ𝑡 , 𝑘𝑡 ], where:
– 𝑛𝑓 𝑐𝑡 denotes the decision-maker’s Need for Cognition
(NFC) [13], a personality variable that measures intrinsic
motivation to think. To capture this, we asked participants
to answer four questions with the highest factor loading
from the NFC questionnaire [13], and then categorized
their score as low if it fell below the median or high other-
wise.

– 𝑐𝑡 represents the concept that is being queried at time
step 𝑡 , which makes the optimal exercise superior to the
suboptimal exercise for the given vignette. For example,
if the task is to choose between walking and ice-skating,
and the relevant factor that tips the balance in favor of
walking is safety, then safety is the concept that is being
probed. In total, four different concepts may be queried:
intensity, goal, safety, and condition.

– 𝑢𝑡 represents the model uncertainty regarding its predic-
tion for the current question, which can be modeled as
a continuous variable. However, we utilize a binary vari-
able based on the ground truth of the AI’s accuracy (i.e.,
correct or incorrect). We acknowledge that this simplifica-
tion is not realistic; nevertheless, it minimizes potential
confounding variables and enhances our confidence in the
overall findings.

– ℎ𝑡 captures the decision-maker’s average knowledge of
concept 𝑐𝑡 up to time step 𝑡 − 1. It is calculated as the
decision-maker’s average accuracy over all previous ques-
tions about concept 𝑐𝑡 , discretized to a binary variable
with a threshold of 0.6.

– 𝑘𝑡 captures the decision-maker’s knowledge about the
task, measured by their performance on three initial ques-
tions with no assistance at the beginning of the study. We
classify their knowledge as either low or high, depending
on whether their average performance was below or above
0.5.

With four possible values for the concept and two values for
each of the other four dimensions, our state space consisted
of a total of 64 possible states.
• Action space is comprised of four different interface pre-
sentations.
– No assistance: participants receive no AI assistance.
– Explanation only: the AI explanation is shown with no
recommendation. Previous work suggests that showing
explanations only fosters learning about the domain [31].

– AI explanation and recommendation (SXAI): both AI rec-
ommendation and explanation about the decision are shown.
Numerous studies have demonstrated such a design to in-
crease accuracy because of (over)reliance on the AI [7, 11,
31]. Note that throughout the paper for clarity, we refer
to the policy that presents AI recommendation and expla-
nation on each decision as simple explainable AI (SXAI),
whereas to the type of assistance as recommendation and
explanation.

– On demand: the AI recommendation and explanation are
shown upon request. As this action elicits curiosity about
the AI’s prediction, we hypothesized that it would increase
cognitive engagement with the task [11], thus learning as
well.

• Reward is multi-objective, seeking to maximize a combina-
tion of accuracy (whether the answer in the current question
is correct) and learning (whether the provided answer in
the later test question with no AI assistance is correct). An
answer is considered correct when it matches the expert
ground truth. We denote the reward as follows:

𝑟 = (1 − _)𝑝 + _𝑑 (1)

where 𝑝 indicates the accuracy outcome,𝑑 indicates the learn-
ing outcome, and _ is the weighing hyperparameter over
these two outcomes. For learning, we receive the reward
only at test time. However, in offline RL all the data is ac-
cessible, allowing assignment of credit to an action at the
current time for its impact on learning that is assessed in
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the future. In other words, if a concept was presented with
an action 𝑘 at time 𝑡𝑖 , we assign to the action 𝑘 the future
learning reward that is measured at test time 1 𝑡 𝑗 , where
𝑗 > 𝑖 .

The data of each participant 𝑖 is considered as an episode:

D⟩ = {𝑠1, 𝑎1, 𝑠2, 𝑎2, ..., 𝑠𝑡 , 𝑎𝑡 , ..., 𝑠𝑇+1}

where 𝑇 is constant and presents the length of the experiment (24
questions), 𝑆𝑡 ∈ S,𝐴𝑡 ∈ A, and𝑅𝑡 ∈ R (the reward received at time
step 𝑡 ). Note that the underlying transition probabilities 𝑇 (𝑠′ |𝑠, 𝑎)
are not directly known in model-free offline policy learning. Instead,
the agent infers the dynamics of the environment from the observed
transitions in the dataset [46].

We operate under the Markov property assumption (“the future
is independent of the past given the present”).

4 METHOD
Having formulated the problem as a reinforcement learning (RL)
problem, we sought to collect data from which to learn policies
that optimize for the decision-makers’ proximal and distal benefits
when assisted by an AI.

4.1 Data Collection with an Exploratory Policy
The purpose of the data collection study was to collect human-AI
decision-making data to inform the development of interaction
policies aimed at optimizing either immediate decision accuracy or
the learning of decision-makers.

4.1.1 Task. Participants completed a series of 33 questions, in
which each question concerned a vignette about a fictitious char-
acter; participants were tasked with selecting which of two sets of
exercises was optimal for the character in question.

4.1.2 Experiment design. We sought to design an experiment that
would enable modeling the impact of various types of assistance
on participants’ immediate accuracy and their learning about the
domain. As such, each participant was randomly assigned to a
subset of three different concepts from a pool of four concepts and
answered 11 questions per concept, a total of 33 questions. This
design choice was informed by work in educational research that
highlights the importance of repeated exposure to a concept for
effective learning [42].

Figure 3 illustrates the experiment design, which consisted of
three test blocks (pre, mid, and post) and two intervention blocks
(first and second). Participants received no AI support on test blocks,
which served as evaluation points to measure their initial knowl-
edge and subsequent learning about the domain. On a given in-
tervention block, a concept was presented only with one type of
assistance (randomly picked), to isolate the effect of the assistance
type on learning. The intervention blocks were preceded and fol-
lowed by a test block. Notably the mid test block served as a post
intervention evaluation for the first intervention block and a pre
intervention evaluation for the second intervention block. Each test
block consisted of one question per concept, a total of 3 questions.

1This approach to assigning reward is an implementation choice we made for this
paper and should not be construed as the only or optimal method for such assignment.

Each intervention block consisted of 4 questions per concept, a
total of 12 questions.

The AI system had an overall accuracy of 75% (three out of 12
intervention questions per block were incorrect). The order of the
questions was randomized for each participant and the questions in
which the AI made incorrect suggestions were picked randomly. We
did, however, ensure that AI was uniformly wrong across concepts,
i.e., each of the three incorrect questions per block belonged to a
different concept.

In an intervention block, each of the three concepts was quasi-
randomly matched with an AI assistance type from the four avail-
able AI assistance types — no AI support, on demand, explanation,
recommendation+explanation. We refer to the procedure as quasi
random because we purposefully sampled no AI less often than
the other forms of AI support. Throughout a given block, a con-
cept was presented only with the assistance type it was assigned
to. The same process of assigning concepts to AI assistance types
was repeated for the second intervention block. This design choice
enabled collecting a larger amount of data per participant to model
the impact of different assistance types on immediate accuracy and
learning.

4.1.3 Participants. Given that there are no guidelines for determin-
ing the sample size from which RL-based algorithms would reliably
capture a signal from the data, the sample size was informed by
MRT-SS Calculator, a sample size calculator for micro-randomized
trials [48]. A sample of 139 participants is required to attain 80%
power with a significance level of 0.05, and 24 (intervention) deci-
sion points (i.e., questions). 2 We recruited a total of 150 participants
for the data collection study via Prolific, an online recruitment plat-
form. We retained 142 participants for analysis, contingent on their
performance surpassing the attention check threshold. Given that
the task involved making decisions based on the comprehension of
vignettes, participation was limited to adults in the United States
who were fluent in English (for detailed demographics, see Appen-
dix Table 2). Each participant was compensated 2.4 USD (12.72 USD
per hour).

4.1.4 Procedure. Our online study was administered through Pro-
lific. Participants were initially provided with a brief overview of
the study, and if they agreed to participate, they were directed to an
informed consent form. Participants were then required to complete
a Need for Cognition (NFC) questionnaire, which included the four
items with the highest factor loading from the widely used 18-item
instrument [13], as identified in previous work [30]. Additionally,
participants were given the option to complete a demographics
form.

Following the completion of these forms, participants were pre-
sented with detailed instructions about the task. They were also
informed that at times they may receive assistance from an AI
that was still under development and was prone to error. The task
consisted of answering 33 questions involving exercise recommen-
dation for a series of fictitious characters. At the study’s conclusion,

2This sample size only reflects binary treatments and focuses on individual treatment
effects, not the policies that can be learned from RL algorithms with the given data.
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test test testexploratory policy — π exploratory policy — π

test testoptimal policy — π*
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pre post

Sample uniformly assistance type a 
per concept from: 

(1) explanation  
(2) recommendation+explanation  
(3) on demand 
(4) no AI 

Resample assistance type a per 
concept from: 

(1) explanation  
(2) recommendation+explanation  
(3) on demand 
(4) no AI 

Select the optimal assistance type from the optimal 
policy based on the current state: 

a = π*(s)  

Data Collection Study

Evaluation Study

Figure 3: An overview of the experiment flow for the data collection and evaluation studies. In the evaluation studies, participants
were randomly assigned to one of the optimal policies (that matched their NFC level) or a baseline policy.

participants were asked to report any technical issues they encoun-
tered, as well as any instances of cheating. Lastly, participants were
provided with feedback on their performance during the study.

4.1.5 Approvals. All experiments reported in this paper were ap-
proved by our institution’s Internal Review Board, under the proto-
col number [anonymized for review].

4.2 Learning the Optimal Policies
From the collected data, our goal was to learn optimal policies with
which to provide assistance to the human decision-maker in order
to optimize their accuracy or learning.

We opted for offline reinforcement learning approaches, which
aim to learn the optimal policy 𝜋∗ from an exploratory, behavioral
policy 𝜋𝛽 . In our setting 𝜋𝛽 is the quasi-uniform policy with which
data was collected. We picked Q-learning, as a model-free off-policy
RL algorithm that does not require state transition probabilities.

The Q-function was learned by iterating,

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾 max
𝑎′

𝑄 (𝑠′, 𝑎′) −𝑄 (𝑠, 𝑎)) (2)

with the next state in the episode 𝑠′ (i.e., next question for a par-
ticipant) and learning rate 𝛼 . We used learning-rate decay on 𝛼 to

speed up convergence, set at a value of 0.1/𝑖 , where 𝑖 was the num-
ber of iterations passed. In our setting, the reward 𝑟 is substituted
by (1 − _)𝑝 + _𝑑 as in equation 1.

Optimizing accuracy. When optimizing for accuracy, we myopi-
cally seek to maximize the immediate accuracy, disregarding both
learning and future rewards. As such, we set both the hyperparam-
eter _ = 0 and the discount factor 𝛾 = 0. In this way, the algorithm
learns to select actions by solely considering the immediate decision
accuracy.

Optimizing learning. On the other hand, optimizing learning
requires consideration of both the learning (_ = 1) and the future
rewards (𝛾 = .99).

For each objective, we ran 200 iterations over the 142 episodes
(i.e., participants), achieving convergence of the Q-table. Finally,
we constructed the optimal policy by picking the optimal action
greedily, 𝜋∗ (𝑠) = argmax

𝑎
𝑄 (𝑠, 𝑎) for each state 𝑠 , thereby forming

a mapping of states to corresponding optimal actions.

4.3 Computational Evaluation of the Learned
Policies

First, we examined computationally the learned policies through
the lens of the broader hypotheses regarding differences among
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different objectives and different groups of NFC. Sections 5 & 6
describe the subsequent evaluation of the policies via two user
studies.

4.3.1 Hypotheses & ResearchQuestions. With the computational
evaluation, we sought to answer the following hypotheses and
research questions:
• H1a: Optimized RL policies will differ from fixed policies
(e.g., simple explainable AI policy). Specifically, at least one
policy for each NFC group will employ a set of interactions
that differs significantly from a fixed policy that always uses
simple AI recommendation and explanation interactions.
• H2: RL policies optimized for improving human learning,
as an objective which requires cognitive engagement, will
employ different interactions for individuals low in NFC
than RL policies optimized for improving the learning of
individuals high in NFC.
• RQ1: Will RL policies optimized for improving the imme-
diate decision accuracy of individuals low in NFC employ
different interactions than RL policies optimized for improv-
ing the immediate decision accuracy of individuals high in
NFC?
• RQ2: Will RL policies optimized for improving the learning
of each group of NFC employ different interactions than RL
policies optimized for improving immediate decision accu-
racy?

Figure 4 depicts the distributions of the types of AI assistance
for different objectives and different NFC groups.

4.3.2 Results. In line withH1a, both the accuracy and the learning
policies differ substantially from any fixed policy, such as the SXAI
policy, which employs only the recommendation and explanation
action. We are unable to conduct a 𝜒2 test due to its inapplicability
for distributions containing zero occurrences, which is the case for
all actions other than recommendation and explanation in the SXAI
policy.

To understand whether different NFC groups benefited from
different types of AI assistance, we conducted a randomization
test [36] using 𝜒2 statistics. The 𝜒2 statistic provides a way to
compare the action distributions identified as optimal by AI policies
for individuals categorized as having low NFC to those with high
NFC. Because the analysis is conducted over the frequencies of
optimal actions for different states that the RL policy has picked,
the difference of distributions of actions we obtained might be due
to the sample of the participants and not the variable we sought to
personalize for — participant’s NFC. To understand how extreme the
obtained 𝜒2 statistics are, (i.e., whether NFC is indeed the factor that
predicts the difference in the distributions of optimal actions) we
conducted a randomization test by randomly assigning participants
to different NFC groups (regardless of their actual level of NFC).
We constructed 1000 such datasets with random NFC assignment.
For each of the newly constructed datasets, we learned policies
(separately for each of the two objectives) and tested the differences
in the distributions of actions via 𝜒2 (See Figure 5). We report the
p-value , which corresponds to the fraction of the 1000 times that
the 𝜒2 statistic of a dataset with random NFC assignment exceeded
the 𝜒2 statistic of the actual dataset [36].

Supporting H2, our results show that the NFC group is a sig-
nificant predictor of the distributions of types of assistance for
learning as the objective (𝜒2 (3, 𝑁 = 128) = 25.16, 𝑝 = .002). Specif-
ically, actions that previous work has shown may elicit cognitive
engagement [11, 31] — explanation only and on demand — were
picked more often for people low in NFC than for those high in NFC.
Whereas for immediate accuracy as the objective, we do not find
any significant difference among the distributions of actions for the
two NFC groups (𝜒2 (3, 𝑁 = 128) = 5.54, 𝑝 = .10), answering RQ1.
For optimizing accuracy, actions such as no assistance (on states
where the AI is incorrect) and recommendation and explanation (on
states where the AI is correct) seem to be optimal for both groups.

To determine if the objective – immediate accuracy or learning –
influences the distribution of AI assistance types (RQ2), using a 𝜒2

test is inappropriate. This is because the policies for both objectives
are derived from the same dataset (i.e., same participants), violating
the independence assumption required for the test. However, we
observe that when optimizing for accuracy for people high in NFC,
no assistance is selected more often than when optimizing learning.
For people low in NFC, both no assistance and recommendation and
explanation are shown more often when optimizing for accuracy
than when optimizing learning.

5 EXPERIMENT 1: EVALUATING
PARTICIPANT PERFORMANCEWITH
OPTIMIZED POLICIES AND SXAI

The purpose of this study was to evaluate the effectiveness of the
learned policies and an SXAI baseline in improving the respective
objectives – immediate decision accuracy and learning – of people
with different levels of NFC interacting with them. Table 1 provides
a combined summary of the findings from this experiment and from
Experiment 2 (Section 6).

5.1 Hypotheses & Research Questions
Specifically, we hypothesized that:

• H1b: Each NFC group interacting with RL policies optimized
for specific target objectives will exhibit superior or compa-
rable performance on those objectives when contrasted with
individuals from the same NFC group interacting with the
SXAI policy.
• H3a: Each group of NFC who interact with an RL policy
optimized for immediate accuracy will perform better on
immediate tasks compared to individuals from the same
NFC group interacting with a policy that selects interactions
based on the human learning.
• H3b: Each group of NFC who interact with an RL policy
optimized for human learning will perform better on distal
tasks (post-intervention questions) compared to individuals
from the sameNFC group interactingwith a policy optimized
for immediate decision accuracy.

In addition, we also sought to answer the following research
questions with our work:

RQ3: Will there be a trade-off between human learning (how
much they learn) and their task enjoyment (including perceptions
of effort required to perform the task)? A trade-off between effort



Towards Optimizing Human-Centric Objectives in AI-Assisted Decision-Making With Offline Reinforcement Learning Conference’17, July 2017, Washington, DC, USA

43.8%

3.1%

18.8%

34.4%

25.0%

18.8%

25.0%

31.2%

21.9% 21.9%

3.1%

53.1%

9.4%

31.2%

50.0%

9.4%

objective = accuracy objective = learning

high N
F

C
low

 N
F

C

explanation no assistance on demand recommendation
and explanation

explanation no assistance on demand recommendation
and explanation

0%

20%

40%

60%

0%

20%

40%

60%

pe
rc

en
t o

f s
ta

te
s 

ac
tio

n 
w

as
 s

el
ec

te
d

Figure 4: Distributions of types of AI assistance selected by the optimal policies for different objectives and NFC groups. Each
bar in the figure represents the percentage of states in which an action was the top action, with the numerator being the number
of states where the action was the top choice and the denominator being the total number of states in the analysis.

Experiment 1 (N = 316) Experiment 2 (N = 964)

Hypotheses
target
objective

baseline: SXAI
optimized: accuracy, learning

baselines: SXAI, explanation, random
optimized: accuracy, combined, learning

accuracy
✓Supported for both NFC groups

accuracy > baseline (SXAI)

✓Supported for both NFC groups

accuracy > all baselines
combined ≥ all baselinesH1b:

Policies optimized for a target objective will result in human performance on that objective
that is either equal to or better than baseline policies. learning

✓Supported for both NFC groups

learning ≥ baseline (SXAI)

✓Supported for both NFC groups

learning ≥ all baselines
combined ≥ all baselines

accuracy
✓* Supported for people high in NFC

accuracy > learning

✓Supported for both NFC groups

accuracy > learningH3a & H3b:

Policies optimized for a target objective will result in better human performance on
that objective than policies optimized for another objective. learning

✓* Supported for people low in NFC

learning > accuracy

✗ Not supported

learning not significantly different from
accuracy

Table 1: Summary of results for the main hypotheses tested in Experiment 1 & 2. For a hypothesis: ✓indicates support, ✓*
partial support, and ✗ no support.

and task enjoyment was previously observed in an AI-supported
decision-making setting [11].

RQ4:Will greater learning of the task domain by the participants
result in participants reporting higher perceived learning? Prior
work indicates that perceived learning does not always reflect actual
learning, particularly if environments that result in more learning
require more effort [26].

5.2 Task and conditions
Participants were randomly assigned to one of the following condi-
tions:

• Baseline, SXAI. Participants were presented with AI recom-
mendations and explanations in each question.

• Accuracy. Participants interacted with the policy optimized
for immediate accuracy for their NFC group.
• Learning. Participants interacted with the policy optimized
for learning for their NFC group.

Similar to the data collection study, participants completed a se-
ries of 33 questions, in which given a vignette about a fictitious
character, they were tasked with selecting the optimal set of exer-
cises about the character in question among two sets of exercises.
Each participant was again randomly assigned to three concepts.
The total 33 questions were presented in three blocks (as shown
in Fig 3): pre, intervention, post. Pre and post test blocks consisted
of six questions each (two per concept), and the intervention block
consisted of 21 questions (seven per concept).
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Figure 5: Randomization test results. Each facet depicts the
𝜒2 distribution of 1000 datasets of random NFC assignments
for the given analysis and the 𝜒2 on the actual dataset (in
blue). “NFC objective = accuracy”, for example, shows the
difference of distributions of actions between the two NFC
groups for the accuracy as the objective. P-value is computed
as the fraction of sampled datasets in which the dataset’s 𝜒2

exceeded the actual 𝜒2.

5.3 Experiment design
The experiment design for the evaluation study consisted of three
blocks: pre, intervention, and post. Participants received no AI as-
sistance on the pre and post blocks, which served as test blocks to
measure participants’ learning. Participants interacted with one of
the three policies (accuracy, learning, SXAI) during the intervention
block.

The simulated AI system had an overall accuracy of 71.4%, with
six out of 21 intervention questions having an underlying incorrect
AI recommendation. As in the data collection study, the order of the
questions was randomized for each participant and the questions
in which the AI made incorrect suggestions were picked randomly.
We ensured that AI had uniform accuracy across concepts: the
six incorrect questions consisted of two incorrect questions per
concept.

5.4 Procedure
The procedure was the same as for the data collection study. Partic-
ipants were recruited via Prolific, a paid crowdsourcing platform
and LabInTheWild.org. LabInTheWild [67] is an online platform
where participants can voluntarily participate in a research study.
Rather than receiving monetary compensation for participation,
participants are presented with a detailed review of performance
on the task and a comparison to other test-takers at the end of the
study.

5.5 Participants
347 participants were recruited and were randomized into the three
reported policies (accuracy, learning, SXAI ). We retained 316 par-
ticipants who passed an attention check at the end of the study
and demonstrated a median completion time of over four seconds
per question, given that the questions involved reading a vignette.
(Participants’ demographics can be found in Appendix, Table 2).
Each participant landing on the study from Prolific received com-
pensation of 2.4 USD (12.72 USD/hr). Participants were assigned to
policies optimized for their respective NFC groups. Categorization
into low or high NFC groups depended on whether participants’
scores fell within the lower or upper 50th percentile of the NFC
scores obtained from the data collection study.

5.6 Design and Analysis
The study was a mixed between- and within-subjects design. There
was one between-subjects factor, policy choice, with three levels: 1.
the accuracy policy, 2. the learning policy, 3. SXAI.

The within-subjects factor was the concept, with participants
interacting with three out of four possible concepts assigned to
them randomly.

We collected the following objective measures:

• Immediate accuracy: Percentage of correct answers in the
intervention questions.
• Learning: Percentage of correct answers in the post ques-
tions (controlling for participant’s performance in pre ques-
tions).
• Overreliance: Percentage of incorrect answers in questions
where the AI was incorrect and participants received any
type of AI assistance.

At the end of the study, we collected the following subjective
measures, all on a 5-point Likert scale from 1=Strongly disagree to
5=Strongly agree:

• Perceived learning: Participants responded to “I believe I
have learned about selecting exercises that are appropriate for
a specific individual’s goals, constraints, and preferences.”
• Task enjoyment: Participants responded to “I enjoyed this
task.”
• Mental demand: Participants responded to “I found this
task mentally demanding.”
• Trust: Participants responded to “I trust this AI’s suggestions
for optimal activities.”

We used analysis of variance to analyze the impact of the differ-
ent policies on both objective and subjective measures. The perfor-
mance of participants on intervention questions was analyzed using
mixed-effects models. The policy was modeled as a fixed effect, and
the participant and concept in question as random effects. For ana-
lyzing learning, it is important to note that participants responded
to only 6 post-intervention questions (2 for each concept). To ensure
data conformity with a normal distribution, we employed analysis
of variance on the average post-intervention question scores per
participant, with policy as fixed effect and performance on pre-
test questions as a covariate. Similarly, for the subjective measures,
analysis of variance with policy as a fixed effect was used. We used
Tukey’s HSD for post-hoc comparisons. For some of the hypotheses,
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our argument rests on the lack of differences between two policies.
For such situations, we report 95% confidence intervals on the effect
size (Cohen’s 𝑑). If the reported interval spans 0 and the interval is
narrow, this approach helps to show that, if any difference between
the treatments (i.e., policies) exists, with high probability, it is small
as the effect could be zero [21, 45, 75].

For the mixed-effect models, we report degrees of freedom ob-
tained via Kenward-Roger method [41].

5.7 Results
5.7.1 Objective Measures. Figure 6 summarizes the main results.

Comparing optimized policies to the SXAI baseline on tar-
get objectives.We investigated how the SXAI approach—in which
participants were always presented with a recommendation and
explanation—compared to the policies that were tailored to the NFC
group and the objective of the interaction. Our results support H1b.
For accuracy as the objective, both NFC groups interacting with the
policy optimized for immediate accuracy performed significantly
better on immediate tasks than those interacting with SXAI (low
NFC: 𝐹1,89.8 = 6.39, 𝑝 = .01, high NFC: 𝐹1,108.1 = 13.97, 𝑝 = .0003).
For learning as the objective, both high and low NFC participants’
performance on distal tasks with SXAI was not significantly better
or worse than their performance on distal tasks when they inter-
acted with the learning policy (low NFC: 𝐹2,92 = 0.06, 𝑝 = .80, Co-
hen’s 𝑑 = 0.06, 95% CI [-0.34, 0.48]; high NFC: 𝐹2,119 = 0.22, 𝑝 = .64.,
Cohen’s 𝑑 = −0.07, 95% CI [-0.43, 0.28]).

Comparing optimized policies to each other on target ob-
jectives. First, focusing on accuracy as the objective, our results
provide partial support for H3a; it was supported for partici-
pants high in NFC, but we find no support for participants low
in NFC. Participants high in NFC who interacted with the accu-
racy policy performed significantly better on immediate tasks than
participants high in NFC who interacted with the learning pol-
icy (𝐹1,111.2 = 16.73, 𝑝 < .0001). They also achieved complemen-
tary human-AI team accuracy (𝑀ℎ𝑢𝑚𝑎𝑛 = 0.59, 𝑆𝐸ℎ𝑢𝑚𝑎𝑛 = 0.03,
𝑀ℎ𝑢𝑚𝑎𝑛+𝐴𝐼 = 0.75, 𝑆𝐸ℎ𝑢𝑚𝑎𝑛+𝐴𝐼 = 0.03; 𝑀𝐴𝐼 = 0.714; 𝑡 (171) =

2.75, 𝑝 = .006). Participants low in NFC interacting with the ac-
curacy policy did not perform significantly better (or worse) on
immediate tasks compared to participants low in NFC who inter-
acted with the learning policy (𝐹1,97.65 = 1.59, 𝑛.𝑠 .).

Similarly, our results partially support H3b, in which the focus
is on the learning objective. In contrast toH3a,H3b was supported
for participants low in NFC, but we find no support for partici-
pants high in NFC. Participants low in NFC who interacted with
the learning policy performed significantly better on distal tasks
(while controlling for their initial knowledge as measured during
the pre-test) than participants low in NFC who interacted with
the accuracy policy (𝐹2,100 = 5.23, 𝑝 = .02). Whereas, participants
high in NFC who interacted with the learning policy did not per-
form significantly better (or worse) on distal tasks compared to
participants high in NFC who interacted with the accuracy policy
(𝐹2,87 = 0.10, 𝑝 = 𝑛.𝑠.).

5.7.2 Subjective Measures. We investigated the effect of policy on
subjective ratings for each NFC group. Results for the subjective
measures are summarized in Table 7. Each group trusted the pol-
icy that was more beneficial for them across objectives (i.e., the

accuracy policy for people high in NFC, and the learning policy
for people low in NFC) significantly more than the SXAI policy.
Both groups also perceived that they had learned and enjoyed the
task more with the policy that was more beneficial for them across
objectives, but this trend was not significant.

5.7.3 Objective measures vs. subjective measures. Figure 8 depicts
the relationships between subjective measures and objective mea-
sures across policies for the two NFC groups. Addressing RQ3,
we do not observe a trade-off between actual learning and task
enjoyment. In fact, task enjoyment was significantly positively cor-
related with actual learning for people low in NFC. We observed
no substantial correlation for people high in NFC. There was also
a significant positive correlation between actual learning and per-
ceived learning for people low in NFC, answering RQ4. Trust was
significantly correlated with immediate accuracy for people high
in NFC. For both NFC groups, trust was positively correlated with
overreliance, albeit for people high in NFC the correlation was
marginal.

5.8 Exploratory Analysis: Does Overreliance on
AI Suggest a Lack of Cognitive Engagement?

In this section, we explore the relationship between overreliance
and cognitive engagement, challenging the conventional assump-
tion that overreliance results solely from a lack of cognitive engage-
ment with the AI-provided information [11, 31].

Echoing past research, our computational analysis showed that
for people low in NFC (i.e., those low in general cognitive motiva-
tion), the policy optimized to improve human learning included
explanation only, an action that leads to cognitive engagement [31],
as the top action (Figure 4). When evaluating participants’ perfor-
mance with the policies, participants low in NFC who interacted
with the learning policy indeed exhibited improved learning out-
comes. This aligns with the notion that cognitive engagement is
crucial for effective learning.

However, a paradox emerged when we analyzed the effects of
each assistance type individually (See Figure 9a). Surprisingly, ex-
planation only assistance led to significantly more overreliance
compared to other assistance types, including AI recommendation
and explanation. Therefore, people both overrelied when making
decisions with the explanation only action but also demonstrated
enhanced learning when this action was predominant in the policy.
This finding challenges the assumption that overreliance necessar-
ily indicates a lack of cognitive engagement.

To further investigate the relationship between these two con-
structs, we conducted a correlation analysis between people’s over-
reliance and their learning across policies (See Figure 9b). Given that
incidental learning has been posited as a strong indicator of cogni-
tive engagement, we would expect a negative correlation between
learning and overreliance. However, we observed no substantial
relationship between overreliance and learning (𝑟 = 0.008, 𝑝 =

𝑛.𝑠., 95%𝐶𝐼 [−.11, .12]). (Bootstrapped 95% confidence intervals on
𝑟 were computed with 1000 bootstrapped datasets.) Based on this
exploratory analysis, we included a new condition – a fixed policy
presenting explanations only – in our subsequent experiment. We
hypothesized that people will learn more but will also overrely
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Figure 6: Experiment 1: Marginal means of participants interacting with the three policies: accuracy, learning, SXAI, on the
two objectives: immediate accuracy and learning. Error bars indicate one standard error. The dashed line in (a) indicates the
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significantly different.
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Figure 7: Experiment 1: Subjective measures. Error bars indicate one standard error. Significance levels (if any) are depicted
with letters. Conditions not sharing the same letter are significantly different.

more on AI when interacting with a fixed explanation only policy
compared to another SXAI.

6 EXPERIMENT 2: EVALUATING
PARTICIPANT PERFORMANCEWITH
OPTIMIZED POLICIES AND MULTIPLE
BASELINES

The second evaluation study had a primary and a secondary goal.
Firstly, to further assess the effectiveness of our proposed approach
— how policies optimized for different outcomes measure up against
other baselines. Secondly, to test the new hypothesis about the
relationship between overreliance and cognitive engagement that
spurred from the exploratory analysis in Section 5.8.

To understand if it is possible to optimize participants’ accuracy
and learning jointly, we introduced a combined policy, an RL-based
policy which was optimized for both accuracy and learning, by
considering both immediate and distal rewards3 (_ = 0.5, 𝛾 = 0).
Alongside this, we included two additional baselines: explanation

3We set 𝛾 = 0, equally weighing immediate and distal benefits with _. Note that, in
our setup, any 𝛾 > 0 would further weigh learning since future rewards might include
accuracy attained with no AI support in the intervention phase.

only, a fixed policy which provides only explanations in every
decision and that prior work has shown to lead to learning without
compromising accuracy [31], and a random policy which selects
actions randomly on each question, as a mixed policy that does not
account for contextual factors.

6.1 Hypotheses
We adjusted H1b to more broadly include the other baselines:

• H1b: Each NFC group interacting with RL policies optimized
for specific target objectives will exhibit superior or com-
parable performance on those objectives when contrasted
with individuals from the same NFC group interacting with
a baseline policy.

Further, in addition to the hypotheses H3a & H3b, we hypothe-
sized the following for the combined policy:

• H3c: Each group of NFC who interact with RL policies op-
timized for both accuracy and learning (i.e., the combined
policy) will perform similarly on the target objectives as the
policies that were optimized solely for the target objective.
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Figure 8: Experiment 1: Relationships between objective vs. subjective measures for the two NFC groups.

Informed by the exploratory analysis of cognitive engagement
and overreliance, we additionally constructed the following hypoth-
esis:
• H4: Compared to the policy which provides AI recommen-
dations and explanations in each decision (i.e., SXAI ), the
explanation only policy will lead to improved learning (as
in [31]), but also increased overreliance on AI.

6.2 Task and conditions
We used the same task design as in experiment 1. In this experi-
ment, participants were randomly assigned to one of the following
conditions:
• Baseline 1, SXAI. Same as in Experiment 1 – showing AI
recommendation and explanation on each question.
• Baseline 2, explanation only. In this condition, partici-
pants received explanation only as assistance for every ques-
tion, a form of assistance previously demonstrated to en-
hance learning without compromising accuracy (only tested
with correct AI recommendations) [31].
• Baseline 3, random policy. Participants were randomly
provided one of four types of assistance for each question.
We included this condition as a baseline to study the effect
of variability of assistance on immediate accuracy and learn-
ing when that assistance is not selected by accounting for
contextual factors.

• Accuracy Same as in Experiment 1 – the policy optimized
for immediate accuracy.
• Learning Same as in Experiment 1 – the policy optimized
for distal benefits.
• Combined In this condition, participants interacted with a
policy that was optimized for both immediate accuracy and
learning.

6.3 Experiment design
The experiment design was similar to Experiment 1 but modified
to include more test questions and fewer intervention questions,
aiming for a more reliable assessment of learning. The pre and post
blocks consisted of 9 questions each, with 3 questions per concept.
The intervention block consisted of 15 questions (5 per concept).
The simulated AI system had an overall accuracy of 73.33%, with
4 out of 15 intervention questions having an underlying incorrect
AI recommendation. These 4 incorrect questions consisted of the 3
concepts, with one concept being randomly chosen to be shown
incorrectly twice per participant.

6.4 Participants
Out of 1063 recruited participants, 964 who passed the attention
check and had a median completion time exceeding 4 seconds
were retained for analysis. These participants were then randomly
assigned to one of the six reported conditions (See Table 2 in the
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Figure 9: Does Overreliance on AI Suggest a Lack of Cognitive Engagement?

Appendix for details). Each participant landing on the study from
Prolific received compensation of 2.4 USD (10.02 USD/hour, with
a median completion time of 14.29 minutes). As in Experiment
1, participants were assigned to policies optimized to their NFC
levels (applicable for non-baseline conditions), categorized as low
or high based on whether their scores were in the bottom or top
50th percentile from the data collection study.

6.5 Procedure, Design and Analysis
All the metrics and methods were the same as in Experiment 1.

6.6 Results
6.6.1 Objective Measures. Figure 10 summarizes the main results.
The main effect of policy for immediate accuracy as the objective
was significant for both groups of NFC (low NFC: 𝐹5,425.2 = 8.01, 𝑝 <

.0001., high NFC: 𝐹5,518 = 5.83, 𝑝 < .0001). Tukey’s HSD compar-
isons are shown in Figure 10. Whereas, for learning as the objective
the main effect was not significant for either group of NFC (low
NFC: 𝐹6,434 = 1.23, 𝑛.𝑠 ., high NFC: 𝐹6,528 = 1.48, 𝑛.𝑠 .).

Comparing optimized policies to baselines on target ob-
jectives. Our results support H1b. For accuracy as the objec-
tive, both NFC groups interacting with the accuracy policy per-
formed significantly better on immediate tasks than those inter-
acting with any of the baselines: SXAI, explanation only, random
policies. Participants low in NFC achieved human-AI complemen-
tary team performance (𝑀ℎ𝑢𝑚𝑎𝑛+𝐴𝐼 = 0.77, 𝑆𝐸ℎ𝑢𝑚𝑎𝑛+𝐴𝐼 = 0.03;

𝑀𝐴𝐼 = 0.73; 𝑡 (89.67) = 2.52, 𝑝 = .01). For learning as the objective,
both high and low NFC participants’ performance on distal tasks
with baselines was not significantly better or worse than their per-
formance on distal tasks with the learning or the combined policy
(Pairwise comparisons with Tukey’s HSD do not detect any signifi-
cant differences among the policies. For pairwise effect sizes and
confidence intervals see Appendix Table 3).

Comparing optimized policies to each other on target ob-
jectives. Our results support H3a for both NFC groups in this
experiment. For each NFC group, participants who interacted with
the policy that was optimized for immediate accuracy performed
significantly better on immediate tasks than participants who in-
teracted with the learning-optimized policy. In contrast to the first
experiment, we do not find support for H3b, with learning as
the objective. There were no significant differences in performance
on distal tasks between participants interacting with the learning
policy and the participants interacting with the accuracy policy or
combined policy, for either NFC group.

Lending support to H3c, participants who interacted with
the combined policy did not perform significantly better or worse
(Tukey’s HSD – Figure 10) on either target objective compared
to participants interacting with the policies that were optimized
only for the accuracy objective (accuracy vs. combined — high NFC:
Cohen’s 𝑑 = .08, 95% CI[-.02, .19], low NFC: Cohen’s 𝑑 = .10, 95%
CI[-.02, .22]) or only the learning objective (combined vs. learning
— high NFC: Cohen’s 𝑑 = .27, 95% CI [-.02,.56]; low NFC: Cohen’s
𝑑 = −.04, 95% CI [-.37,.29]).
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Figure 10: Experiment 2: Performance of participants interacting with six policies on the two objectives: accuracy and learning.
Error bars indicate one standard error. The dashed line in (a) indicates the performance of the AI. Significance levels (if any)
are depicted with letters. Conditions not sharing the same letter are significantly different.

6.6.2 Subjective measures. Results of subjective measures are sum-
marized in Figure 11. For subjective measures, the main effect of
policy was only significant for perceived learning for participants
high in NFC. Participants high in NFC perceived to have learned
significantly more with the accuracy and combined policy than with
the SXAI, random or learning policies (𝐹5,528 = 3.66, 𝑝 = .003).

6.6.3 Objective measures vs. subjective measures. As in Experiment
1, we do not observe a trade-off between actual learning and task
enjoyment (RQ3). We further do not observe a correlation between
actual and perceived learning, which was significant only for people
low in NFC in Experiment 1 (RQ4). (To avoid repetition, the results
of objective versus subjective measures from Experiment 2 are
presented in the Appendix, Figure 11.)

6.6.4 Overreliance does not necessarily indicate a lack of cognitive
engagement. Our results supported H4 only for people low in NFC.
Specifically, people low in NFCwho interacted with the explanation
policy learned significantly more than people low in NFC who
interacted with the SXAI policy (𝐹2,140 = 3.22, 𝑝 = .04). But they
also overrelied significantly more on AI when interacting with the
explanation policy compared to the SXAI policy (𝐹1,163.3 = 4.48, 𝑝 =

.04).

7 DISCUSSION
In this work, we introduced offline reinforcement learning (RL)
to learn decision support policies that optimize different human-
centric objectives in AI-assisted decision-making. We instantiated
our proposed approach with two objectives — immediate accuracy
of the decisions or long-term learning by human decision-makers
— while accounting for individual differences in people’s need for
cognition (or NFC, which reflects a person’s intrinsic motivation to
think) and other contextual factors.

7.1 Effectiveness of adaptive decision-making
support for accuracy and learning as
objectives

Our work demonstrated that AI assistance needs to be dynamic,
changing in response to context, individual differences, and the

specified objective. In particular, our results showed that better
solutions than fixed policies like SXAI or mixed policies which do
not consider these factors (i.e., random policy) can be learned for
optimizing for immediate accuracy as the objective in human-AI
decision-making. Both high and low NFC groups achieved signif-
icantly higher accuracy when they interacted with policies opti-
mized for accuracy (i.e., accuracy or combined policies) compared to
interacting with (i) policies that do not adapt the support based on
context, or (ii) policies that were optimized solely for the learning
objective. Notably, participants high in NFC (in Experiment 1) and
participants low in NFC (in Experiment 2) achieved complemen-
tary human-AI team performance with the accuracy policy, outper-
forming both human and AI accuracy alone on the task. Together
with recent work [52, 59], our results provide further evidence that
adaptive interventions that consider contextual factors (e.g., AI’s
uncertainty, the decision-maker’s competence or confidence) may
be a promising approach for achieving the sought-after human-AI
complementarity [7, 10].

Our work also demonstrated that learning as an objective was
more challenging to optimize than immediate decision accuracy.
First, we observed that people high in NFC attained similar learning
outcomes regardless of the policy they interactedwith in both exper-
iments, presumably because they were already motivated to engage
with information. In contrast, those low in NFC benefited more
from the learning policy than the accuracy policy in Experiment
1. However, Experiment 2 showed overall no significant difference
in learning outcomes between these or other policies. We believe
the diminished learning signal across policies in Experiment 2, as
opposed to Experiment 1, could be attributed to changes made in
the experimental design. While the total number of questions re-
mained constant across experiments, the second experiment had
fewer intervention and more test questions. Although we aimed to
strengthen learning measurement in Experiment 2 by increasing
the number of test questions in our design update, we inadvertently
limited exposure to concepts and, consequently, learning opportu-
nities. We also believe that the task complexity, coupled with the
explanation design, may have contributed to making learning chal-
lenging for the task. The task demanded not only an understanding
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Figure 11: Experiment 2: Subjective measures. Error bars indicate one standard error. Significance levels (if any) are depicted
with letters. Conditions not sharing the same letter are significantly different.

of exercise-related facts, such as the benefits of pilates for flexibil-
ity, but also the skill to make suitable trade-offs, like balancing a
fictitious character’s goals against preferences. However, the expla-
nations focused solely on exercise facts, and not of trade-offs, which
may have added to the overall learning challenge. Our research
underscores the critical need to develop robust explanations and
human-AI interactions that consistently enhance human learning
about the domain, as well as their accuracy on the task.

Comparing objective and subjective measures in AI-assisted
decision-making, a trade-off between performance and preference
was previously observed [11]. Interestingly, our results showed that
task enjoyment and perceived learning were positively correlated
with actual learning for people low in NFC. No such correlation was
observed for people high in NFC. A plausible explanation for this
result may be that for low NFC participants, who are not generally
inclined to engage in unnecessary cognitively-demanding activi-
ties, increased enjoyment of the task led to increased task-specific
intrinsic motivation [25], and that, in turn, led to greater cogni-
tive engagement. These findings suggest that unlike previously
assumed [11], cognitive engagement may not necessarily come at
the cost of negative subjective experience.

7.2 Evidence that RL is a promising approach
for modeling human-AI decision-making

Our computational analysis of the learned policies demonstrated
that RL may be a valuable approach to modeling human-AI inter-
action in decision-making tasks. Specifically, we found that the
composition of policies differed in meaningful ways depending on
both the objective and the NFC group, and differed significantly
from showing a fixed type of AI assistance (e.g., recommendation
and explanation only). The analysis of the composition of these
policies revealed some insights into how learning and immediate
decision accuracy were supported for individuals with different
levels of NFC.

7.2.1 What have we learned about the impact of need for cognition?
Our computational evaluation of the policies showed that the NFC
group had a significant impact on shaping the composition of the
policies optimized for learning, which necessitated cognitive en-
gagement. Consistent with H2, the learning policy favored actions
that prior work has shown may promote cognitive engagement,

such as explanation only [31], more often for individuals with low
NFC than for those with high NFC. Considering that individuals
with low NFC do not tend to naturally cognitively engage with
information, which is critical for learning, this finding is in line
with the NFC construct.

NFC, however, was not a predictor of the policy composition
for immediate decision accuracy (RQ1). An initial analysis indi-
cated that the accuracy-optimized policies achieved their goal not
by supporting cognitive engagement but by making reliance on
the AI unlikely in those situations when the AI was incorrect. In
those cases, AI assistance was often withheld. Specifically, when
we examined the distributions of assistance types disaggregated by
AI correctness (See Appendix, Figure 13), we observed that when
the AI was accurate (in half of the state space), the policies for
both groups were nearly identical, predominantly favoring actions
like recommendation and explanation, which prior research has in-
dicated can lead to reliance, but also explanation only. Whereas,
in cases where the AI was incorrect, the optimal course of action
for individuals with high NFC clearly leaned toward no assistance,
whereas for individuals with low NFC, the optimal choices included
both no assistance and on demand. One possible explanation for
why the policy might have discovered this signal is that individ-
uals with low NFC tend to be less inclined to actively seek out
information. Consequently, they were also less inclined to click
and view the AI suggestion when it was presented in an on de-
mand assistance format, rendering on demand and no assistance
similar interventions for them. To understand whether that was
indeed what happened, we looked at how often individuals with
low and high NFC clicked on the AI suggestion when it was offered
in the on demand assistance format in the data collection study.
Our findings revealed that individuals with low NFC clicked on the
AI suggestion only 21% of the time, whereas those with high NFC
were notably more inclined to click on the suggestion, doing so
52% of the time. This finding expands our understanding of how
different individuals interact with different assistance types and
it also highlights the promise of computational models to enable
discovery about human-AI decision-making.

7.2.2 What have we learned about different objectives? Our inspec-
tion of the learned policies also revealed that the objective influ-
enced the policy composition for both NFC groups. For people low
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in NFC, the learning policy favored actions that induced cognitive
engagement (i.e., explanation), whereas the accuracy policy favored
actions that induced reliance when AI was correct (i.e., recommen-
dation and explanation). On the other hand, given that people high
in NFC are already motivated to engage with information, recom-
mendation and explanation was a good action for both accuracy and
learning.

When optimizing accuracy as the objective, no assistance was
chosen more frequently than when the objective was learning. It
was an optimal action for close to half of the state space, which
corresponded to the instances when the AI was incorrect. This sug-
gests that the policy recognized not providing assistance was the
best option for preventing overreliance when the AI made mistakes,
corroborating findings from previous research [59]. In addition,
given that no assistance was less often shown when optimizing
learning, this also suggests that for improving learning any infor-
mation is more beneficial than no information at all. Looking at
the composition of the learning policy when the AI was correct
vs. incorrect (See Figure 14), we do not observe any differences in
policy compositions, suggesting that AI correctness was irrelevant
to supporting learning. We believe this result is due to our expla-
nation design, which provided factually correct, albeit irrelevant,
information when the AI was incorrect. Therefore, participants may
have learned useful information even though the AI suggestion
was wrong.

Interestingly, the distributions of actions for the combined policy,
which was optimized for both learning and accuracy were similar
to the learning policy for people low in NFC, and similar to the
accuracy policy for people high in NFC (See Appendix, Figure 15).
For both groups, the respective policies were the better choices
across objectives (in Experiment 1). This finding further suggests
that the policies are optimizing for both objectives successfully,
albeit the learning signal is more difficult to capture.

7.3 Does overreliance on AI suggest a lack of
cognitive engagement?

Appropriate reliance on AI and cognitive engagement are critical
constructs to consider when seeking to optimize accuracy and learn-
ing in AI-assisted decision-making. Fractured evidence from prior
work suggested that there exists a relationship between cognitive
engagement and overreliance on AI. Some assistance types such as
recommendation and explanation induced reliance on AI, regardless
of AI correctness [11]. But they also led to no learning about the do-
main [31]. Other assistance types, such as providing an explanation
only without a decision recommendation, improved learning about
the domain (indicating cognitive engagement) [31], but their effect
on (over)reliance was not evaluated. The underlying explanation
for the difference in learning outcomes (and the possible difference
in reliance) for the two assistance types was related to the effect
they had on cognitive engagement. It was suggested that cognitive
engagement explained both learning and overreliance. Assistance
types that induce cognitive engagement lead to learning and should
reduce overreliance on AI [31].

Our results paint amore complex picture. Drawing on exploratory
analysis (§ 5.8) and the subsequent finding (§ 6) that explanation

only improved learning compared to SXAI , we believe that cogni-
tive engagement does indeed improve learning. But contrary to the
field’s tentative understanding, lack of cognitive engagement may
not be the sole predictor of overreliance. The first piece of evidence
that supports this hypothesis is that in our exploratory analysis,
we find no substantial correlation between overreliance and learn-
ing across policies. Also, when analyzing the effect of individual
assistance types on overreliance, we observed that explanation only
led to significant overreliance compared to other assistance types,
but people interacting with policies where explanation only was
the predominant assistance type also exhibited improved learning.
Decisively, Experiment 2 revealed that people low in NFC both
learned more and overrelied more on AI when interacting with
explanation only policy compared to SXAI.

Together our findings demonstrate that the relationship between
overreliance and cognitive engagement is multifaceted and not as
straightforward as previously assumed. While cognitive engage-
ment remains a crucial aspect of learning, overreliance on AI may
stem from various factors. It may be a result of superficial engage-
ment with AI-provided assistance, but it may also be due to people
engaging with the provided assistance and finding the AI’s (mis-
leading) explanation plausible. Understanding these nuances is
essential for developing effective AI systems that enhance learning
and promote appropriate reliance.

7.4 Generalizability & Limitations
We believe offline RL has the potential to optimize various human-
centric objectives effectively in AI decision-making, although we
focused only on accuracy and learning in this work. Success de-
pends, however, on intelligently designing RL components (state
space, action space, rewards) based on each specific objective. This
can be especially challenging for human-centric objectives other
than accuracy for which empirical evidence about effective as-
sistance types and relevant factors is still scarce in AI-assisted
decision-making literature, as we observed for learning as an ob-
jective. Although we used offline RL in this work (we ran an initial
study with an exploratory policy, and then optimized for policies),
we could have run an online RL algorithm instead (where we learn
optimal policies during a study). However, this can be risky (by tak-
ing exploratory unsafe actions in real-time in the environment) and
computationally expensive (especially when decisions are required
in time-constrained settings). We used Q-learning as our offline
off-policy learning algorithm: other algorithms are possible, but
Q-learning was sufficient in our relatively simple (discrete) state
and action-space.

Our work has several limitations. Our findings are based on stud-
ies conducted with a single task, in a non-critical domain, and with
crowds. However, since previous research in AI-assisted decision-
making has demonstrated that experts exhibit behavior akin to
that of crowds when utilizing AI for decision-making [32], we
may expect our findings to generalize in real contexts with experts
making decisions in critical domains. Our results may have also
partially been driven by the explanation choice, which was explic-
itly designed to enable learning of factual information about the
task domain (e.g., swimming supports muscle building). As is the
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case with accuracy [7, 10, 18], we believe that different explanation
designs may have different impacts on learning.

8 ETHICAL CONSIDERATIONS
The status quo of deployingAI decision support systemswithout un-
derstanding their impact on people — their skills, enjoyment, auton-
omy, collaboration with others, and work meaning — is implicitly
a value-laden decision. While our approach introduces a novel re-
search direction focused on making such values explicit by enabling
optimization of human-centric objectives in AI-assisted decision-
making, it also surfaces ethical issues that must be addressed. One
critical aspect is deploying technologies in a worker-centered way
and ensuring that individuals engaging with these systems possess
the autonomy to shape the influence these technologies have on
them and their work environment [2, 4, 39]. Therefore, it is critical
for the system objectives to be determined and inputted by the
users themselves, rather than being paternalistically imposed by
those in power (e.g., managers). Further, personalization variables
in the algorithm based on factors like skill level or motivation to
think, may be used for nefarious purposes and could lead to unfair
treatment or discrimination in workplace settings. It is essential to
safeguard user privacy of such variables in the system design and
allow only individuals interacting with the system to decide what
variables can be tracked and utilized for personalization [4, 6].

9 CONCLUSION
We proposed offline RL as an approach to provide adaptive support
for optimizing different human-centric objectives in AI-assisted
decision-making. To instantiate our approach, we considered deci-
sion accuracy and learning about the domain as objectives that are
important to optimize. We constructed the state space and action
space according to these objectives and learned decision-support
policies. Our results showed that our approach was consistently
successful in improving the accuracy of people interacting with the
optimized policies. Whereas learning was more difficult to optimize,
leading to improved outcomes only in specific instances. Overall,
our results demonstrated that offline RL is a promising approach for
modeling human-AI decision-making, leading to both policies that
optimize objectives and through interpretation, can reveal novel
insights about human-AI decision-making space. Our research also
underscores the importance of considering human-centric objec-
tives beyond decision accuracy in AI-assisted decision-making and
identifies the open research area for designing human-AI interac-
tion that improves learning and other human-centric objectives
along with accuracy.

ACKNOWLEDGEMENTS
This work was supported in part by the National Science Foun-
dation under Grant No. IIS-2107391. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation. We thank Daniel Oppenheimer,
Ian Arawjo, Markus Langer, Eura Shin, Katy Gero, Suzanne Smith,
Yaniv Yacoby, Alex Cabral, Harvard HCI and DtAK Labs, and the
d3center at UMich for helpful suggestions and discussions. ZB was
partially supported by an IBM PhD Fellowship.

REFERENCES
[1] Daron Acemoglu, David Autor, and Simon Johnson. 2023. Can we Have Pro-

Worker AI? CEPR Policy Insight 123 (October 2023).
[2] Daniel A Adler, Emily Tseng, Khatiya C Moon, John Q Young, John M Kane,

Emanuel Moss, David C Mohr, and Tanzeem Choudhury. 2022. Burnout and the
quantified workplace: tensions around personal sensing interventions for stress
in resident physicians. Proceedings of the ACM on Human-computer Interaction 6,
CSCW2 (2022), 1–48.

[3] Barbara E Ainsworth, William L Haskell, Stephen D Herrmann, Nathanael
Meckes, David R Bassett, Catrine Tudor-Locke, Jennifer L Greer, Jesse Vezina,
Melicia C Whitt-Glover, and Arthur S Leon. 2011. 2011 Compendium of Physical
Activities: a second update of codes and MET values. Med Sci Sports Exerc 43, 8
(2011), 1575–1581.

[4] Ifeoma Ajunwa. 2020. The “black box” at work. Big Data & Society 7, 2 (2020),
2053951720966181.

[5] Yasmeen Alufaisan, Laura R Marusich, Jonathan Z Bakdash, Yan Zhou, and
Murat Kantarcioglu. 2021. Does explainable artificial intelligence improve human
decision-making?. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35. 6618–6626.

[6] Sumit Asthana, Jane Im, Zhe Chen, and Nikola Banovic. 2024. “I know even if
you don’t tell me”: Understanding Users’ Privacy Preferences Regarding AI-based
Inferences of Sensitive Information for Personalization. (2024).

[7] Gagan Bansal, Tongshuang Wu, Joyce Zhou, Raymond Fok, Besmira Nushi, Ece
Kamar, Marco Tulio Ribeiro, and Daniel Weld. 2021. Does the whole exceed
its parts? the effect of ai explanations on complementary team performance. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–16.

[8] LucyM Berlin and Robin Jeffries. 1992. Consultants and apprentices: observations
about learning and collaborative problem solving. In Proceedings of the 1992 ACM
conference on Computer-supported cooperative work. 130–137.

[9] Umang Bhatt, Valerie Chen, Katherine M Collins, Parameswaran Kamalaruban,
Emma Kallina, Adrian Weller, and Ameet Talwalkar. 2023. Learning Personalized
Decision Support Policies. arXiv preprint arXiv:2304.06701 (2023).

[10] Zana Buçinca, Phoebe Lin, Krzysztof Z. Gajos, and Elena L. Glassman. 2020. Proxy
Tasks and Subjective Measures Can Be Misleading in Evaluating Explainable AI
Systems. In Proceedings of the 25th International Conference on Intelligent User
Interfaces (IUI ’20). ACM, New York, NY, USA.

[11] Zana Buçinca, Maja Barbara Malaya, and Krzysztof Z. Gajos. 2021. To Trust
or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in
AI-Assisted Decision-Making. Proc. ACM Hum.-Comput. Interact. 5, CSCW1,
Article 188 (April 2021), 21 pages. DOI:http://dx.doi.org/10.1145/3449287

[12] Ángel Alexander Cabrera, Adam Perer, and Jason I Hong. 2023. Improving
human-AI collaboration with descriptions of AI behavior. Proceedings of the ACM
on Human-Computer Interaction 7, CSCW1 (2023), 1–21.

[13] John T Cacioppo and Richard E Petty. 1982a. The need for cognition. Journal of
personality and social psychology 42, 1 (1982), 116.

[14] John T. Cacioppo and Richard E. Petty. 1982b. The need for cognition. Journal of
Personality and Social Psychology 42, 1 (1982), 116–131. DOI:http://dx.doi.org/10.
1037/0022-3514.42.1.116

[15] Shiye Cao, Catalina Gomez, and Chien-Ming Huang. 2023. How Time Pressure
in Different Phases of Decision-Making Influences Human-AI Collaboration.
Proceedings of the ACM on Human-Computer Interaction 7, CSCW2 (2023), 1–26.

[16] Giuseppe Carenini. 2001. An Analysis of the Influence of Need for Cognition
on Dynamic Queries Usage. In CHI ’01 Extended Abstracts on Human Factors
in Computing Systems (CHI EA ’01). ACM, New York, NY, USA, 383–384. DOI:
http://dx.doi.org/10.1145/634067.634293

[17] Ana-Maria Cazan and Simona Elena Indreica. 2014. Need for cognition and
approaches to learning among university students. Procedia-Social and Behavioral
Sciences 127 (2014), 134–138.

[18] Valerie Chen, Q Vera Liao, Jennifer Wortman Vaughan, and Gagan Bansal. 2023.
Understanding the Role of Human Intuition on Reliance in Human-AI Decision-
Making with Explanations. arXiv e-prints (2023), arXiv–2301.

[19] Xiuli Chen, Sandra Dorothee Starke, Chris Baber, and Andrew Howes. 2017. A
cognitive model of how people make decisions through interaction with visual
displays. In Proceedings of the 2017 CHI conference on human factors in computing
systems. 1205–1216.

[20] Lingwei Cheng and Alexandra Chouldechova. 2023. Overcoming Algorithm
Aversion: A Comparison between Process and Outcome Control. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. 1–27.

[21] Nick Colegrave and Graeme D Ruxton. 2003. Confidence intervals are a more
useful complement to nonsignificant tests than are power calculations. Behavioral
Ecology 14, 3 (2003), 446–447.

[22] WilliamMCrocoll and Bruce G Coury. 1990. Status or recommendation: Selecting
the type of information for decision aiding. In Proceedings of the human factors
society annual meeting, Vol. 34. SAGE Publications Sage CA: Los Angeles, CA,
1524–1528.

http://dx.doi.org/10.1145/3449287
http://dx.doi.org/10.1037/0022-3514.42.1.116
http://dx.doi.org/10.1037/0022-3514.42.1.116
http://dx.doi.org/10.1145/634067.634293


Towards Optimizing Human-Centric Objectives in AI-Assisted Decision-Making With Offline Reinforcement Learning Conference’17, July 2017, Washington, DC, USA

[23] Valdemar Danry, Pat Pataranutaporn, Yaoli Mao, and Pattie Maes. 2023. Don’t Just
Tell Me, Ask Me: AI Systems that Intelligently Frame Explanations as Questions
Improve Human Logical Discernment Accuracy over Causal AI explanations. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
1–13.

[24] Edward L Deci, Anja H Olafsen, and Richard M Ryan. 2017. Self-determination
theory in work organizations: The state of a science. Annual review of organiza-
tional psychology and organizational behavior 4 (2017), 19–43.

[25] Edward L Deci and Richard M Ryan. 2012. Self-determination theory. Handbook
of theories of social psychology 1, 20 (2012), 416–436.

[26] Louis Deslauriers, Logan S McCarty, Kelly Miller, Kristina Callaghan, and Greg
Kestin. 2019. Measuring actual learning versus feeling of learning in response to
being actively engaged in the classroom. Proceedings of the National Academy of
Sciences (2019), 201821936.

[27] Shayan Doroudi, Vincent Aleven, and Emma Brunskill. 2019. Where’s the reward?
a review of reinforcement learning for instructional sequencing. International
Journal of Artificial Intelligence in Education 29 (2019), 568–620.

[28] Matthew Fisher and Daniel M Oppenheimer. 2021a. Harder than you think: How
outside assistance leads to overconfidence. Psychological Science 32, 4 (2021),
598–610.

[29] Matthew Fisher and Daniel M Oppenheimer. 2021b. Who knows what? Knowl-
edge misattribution in the division of cognitive labor. Journal of Experimental
Psychology: Applied 27, 2 (2021), 292.

[30] Krzysztof Z Gajos and Krysta Chauncey. 2017. The influence of personality traits
and cognitive load on the use of adaptive user interfaces. In Proceedings of the
22nd International Conference on Intelligent User Interfaces. 301–306.

[31] Krzysztof Z Gajos and Lena Mamykina. 2022. Do People Engage Cognitively
with AI? Impact of AI Assistance on Incidental Learning. arXiv preprint
arXiv:2202.05402 (2022).

[32] Susanne Gaube, Harini Suresh, Martina Raue, AlexanderMerritt, Seth J Berkowitz,
Eva Lermer, Joseph F Coughlin, John V Guttag, Errol Colak, and Marzyeh Ghas-
semi. 2021. Do as AI say: susceptibility in deployment of clinical decision-aids.
NPJ digital medicine 4, 1 (2021), 1–8.

[33] Luke Guerdan, Amanda Coston, Zhiwei Steven Wu, and Kenneth Holstein. 2023.
Ground(less) Truth: A Causal Framework for Proxy Labels in Human-Algorithm
Decision-Making. In Proceedings of the 2023 ACM Conference on Fairness, Account-
ability, and Transparency (FAccT ’23). Association for Computing Machinery, New
York, NY, USA, 688–704. DOI:http://dx.doi.org/10.1145/3593013.3594036

[34] J Richard Hackman and Greg R Oldham. 1976. Motivation through the design of
work: Test of a theory. Organizational behavior and human performance 16, 2
(1976), 250–279.

[35] Gaole He, Lucie Kuiper, and Ujwal Gadiraju. 2023. Knowing About Knowing: An
Illusion of Human Competence Can Hinder Appropriate Reliance on AI Systems.
In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
1–18.

[36] Guido W Imbens and Donald B Rubin. 2015. Causal inference in statistics, social,
and biomedical sciences. Cambridge University Press.

[37] Jussi Jokinen, Aditya Acharya, Mohammad Uzair, Xinhui Jiang, and Antti
Oulasvirta. 2021. Touchscreen typing as optimal supervisory control. In Proceed-
ings of the 2021 CHI conference on human factors in computing systems. 1–14.

[38] Patricia K Kahr, Gerrit Rooks, Martijn C Willemsen, and Chris CP Snijders. 2023.
It seems smart, but it acts stupid: Development of trust in ai advice in a repeated
legal decision-making task. In Proceedings of the 28th International Conference on
Intelligent User Interfaces. 528–539.

[39] Anna Kawakami, Shreya Chowdhary, Shamsi T Iqbal, Q Vera Liao, Alexandra
Olteanu, Jina Suh, and Koustuv Saha. 2023a. Sensing wellbeing in the work-
place, why and for whom? envisioning impacts with organizational stakeholders.
Proceedings of the ACM on Human-Computer Interaction 7, CSCW2 (2023), 1–33.

[40] Anna Kawakami, Luke Guerdan, Yanghuidi Cheng, Matthew Lee, Scott Carter,
Nikos Arechiga, Kate Glazko, Haiyi Zhu, and Kenneth Holstein. 2023b. Training
Towards Critical Use: Learning to Situate AI Predictions Relative to Human
Knowledge. arXiv preprint arXiv:2308.15700 (2023).

[41] Michael G Kenward and James H Roger. 1997. Small sample inference for fixed
effects from restricted maximum likelihood. Biometrics (1997), 983–997.

[42] Kenneth R Koedinger, Paulo F Carvalho, Ran Liu, and Elizabeth A McLaughlin.
2023. An astonishing regularity in student learning rate. Proceedings of the
National Academy of Sciences 120, 13 (2023), e2221311120.

[43] Vivian Lai, Yiming Zhang, Chacha Chen, Q Vera Liao, and Chenhao Tan. 2023. Se-
lective explanations: Leveraging human input to align explainable ai. Proceedings
of the ACM on Human-Computer Interaction 7, CSCW2 (2023), 1–35.

[44] Markus Langer, Tim Hunsicker, Tina Feldkamp, Cornelius J König, and Nina
Grgić-Hlača. 2022. “Look! It’sa computer program! It’s an algorithm! It’s AI!”:
Does terminology affect human perceptions and evaluations of algorithmic
decision-making systems?. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems. 1–28.

[45] Dong Kyu Lee. 2016. Alternatives to P value: confidence interval and effect size.
Korean journal of anesthesiology 69, 6 (2016), 555.

[46] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline rein-
forcement learning: Tutorial, review, and perspectives on open problems. arXiv

preprint arXiv:2005.01643 (2020).
[47] Zhi Li, Yu-Jung Ko, Aini Putkonen, Shirin Feiz, Vikas Ashok, IV Ramakrishnan,

Antti Oulasvirta, and Xiaojun Bi. 2023. Modeling touch-based menu selection
performance of blind users via reinforcement learning. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems. 1–18.

[48] Peng Liao, Predrag Klasnja, Ambuj Tewari, and Susan A Murphy. 2016. Sample
size calculations for micro-randomized trials in mHealth. Statistics in medicine
35, 12 (2016), 1944–1971.

[49] Chin-Lung Lin, Sheng-Hsien Lee, andDer-JuinnHorng. 2011. The effects of online
reviews on purchasing intention: The moderating role of need for cognition.
Social Behavior and Personality: an international journal 39, 1 (2011), 71–81.

[50] Zhuoran Lu, DakuoWang, andMing Yin. 2024. Does more advice help? the effects
of second opinions in AI-assisted decisionmaking. arXiv preprint arXiv:2401.07058
(2024).

[51] Zhuoran Lu and Ming Yin. 2021. Human reliance on machine learning models
when performance feedback is limited: Heuristics and risks. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–16.

[52] Shuai Ma, Ying Lei, Xinru Wang, Chengbo Zheng, Chuhan Shi, Ming Yin, and
Xiaojuan Ma. 2023. Who Should I Trust: AI or Myself? Leveraging Human and
AI Correctness Likelihood to Promote Appropriate Trust in AI-Assisted Decision-
Making. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems. 1–19.

[53] Victoria J. Marsick and Karen E. Watkins. 2001. Informal and Incidental Learning.
New Directions for Adult and Continuing Education 2001, 89 (2001), 25. DOI:
http://dx.doi.org/10.1002/ace.5

[54] Victoria J Marsick, Karen E Watkins, Ellen Scully-Russ, and Aliki Nicolaides.
2017. Rethinking informal and incidental learning in terms of complexity and the
social context. Journal of Adult Learning, Knowledge and Innovation 1, 1 (2017),
27–34.

[55] Tim Miller. 2023. Explainable AI is Dead, Long Live Explainable AI! Hypothesis-
Driven Decision Support Using Evaluative AI. In Proceedings of the 2023 ACM
Conference on Fairness, Accountability, and Transparency (FAccT ’23). Association
for Computing Machinery, New York, NY, USA, 333–342. DOI:http://dx.doi.org/
10.1145/3593013.3594001

[56] Frederick P Morgeson and Michael A Campion. 2003. Work design. Handbook of
psychology: Industrial and organizational psychology 12, 2 (2003), 423–452.

[57] Hussein Mozannar, Jimin Lee, Dennis Wei, Prasanna Sattigeri, Subhro Das, and
David Sontag. 2024. Effective Human-AI Teams via Learned Natural Language
Rules and Onboarding. Advances in Neural Information Processing Systems 36
(2024).

[58] Hussein Mozannar, Arvind Satyanarayan, and David Sontag. 2022. Teaching
humans when to defer to a classifier via exemplars. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36. 5323–5331.

[59] Gali Noti and Yiling Chen. 2022. Learning When to Advise Human Decision
Makers. arXiv preprint arXiv:2209.13578 (2022).

[60] Joon Sung Park, Rick Barber, Alex Kirlik, and Karrie Karahalios. 2019. A Slow
Algorithm Improves Users’ Assessments of the Algorithm’s Accuracy. Proceedings
of the ACM on Human-Computer Interaction 3, CSCW (2019), 1–15.

[61] Sharon K Parker and Caroline Knight. 2024. The SMART model of work design:
A higher order structure to help see the wood from the trees. Human Resource
Management 63, 2 (2024), 265–291.

[62] Sharon K Parker, Frederick P Morgeson, and Gary Johns. 2017. One hundred
years of work design research: Looking back and looking forward. Journal of
applied psychology 102, 3 (2017), 403.

[63] Samir Passi and Mihaela Vorvoreanu. 2022. Overreliance on AI Literature Review.
Microsoft Research (2022).

[64] Marc Pinski, Martin Adam, and Alexander Benlian. 2023. AI Knowledge: Improv-
ing AI Delegation through Human Enablement. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. 1–17.

[65] Forough Poursabzi-Sangdeh, Daniel G Goldstein, Jake M Hofman, Jennifer Wort-
man Vaughan, and Hanna Wallach. 2018. Manipulating and measuring model
interpretability. arXiv preprint arXiv:1802.07810 (2018).

[66] Amy Rechkemmer and Ming Yin. 2022. When confidence meets accuracy: Explor-
ing the effects of multiple performance indicators on trust in machine learning
models. In Proceedings of the 2022 chi conference on human factors in computing
systems. 1–14.

[67] Katharina Reinecke and Krzysztof Z. Gajos. 2015. LabintheWild: Conducting
Large-Scale Online Experiments With Uncompensated Samples. In Proceedings
of the 18th ACM Conference on Computer Supported Cooperative Work & Social
Computing (CSCW ’15). ACM, New York, NY, USA, 1364–1378. DOI:http://dx.
doi.org/10.1145/2675133.2675246

[68] Günter Ropohl. 1999. Philosophy of socio-technical systems. Society for Philoso-
phy and Technology Quarterly Electronic Journal 4, 3 (1999), 186–194.

[69] Jerome I Rotgans and Henk G Schmidt. 2011. Cognitive engagement in the
problem-based learning classroom. Advances in health sciences education 16, 4
(2011), 465–479.

[70] James Schaffer, John O’Donovan, James Michaelis, Adrienne Raglin, and Tobias

http://dx.doi.org/10.1145/3593013.3594036
http://dx.doi.org/10.1002/ace.5
http://dx.doi.org/10.1145/3593013.3594001
http://dx.doi.org/10.1145/3593013.3594001
http://dx.doi.org/10.1145/2675133.2675246
http://dx.doi.org/10.1145/2675133.2675246


Conference’17, July 2017, Washington, DC, USA Buçinca, et al.

Höllerer. 2019. I can do better than your AI: expertise and explanations. In
Proceedings of the 24th International Conference on Intelligent User Interfaces.
240–251.

[71] Maria Sicilia, Salvador Ruiz, and Jose L Munuera. 2005. Effects of interactivity in
a web site: The moderating effect of need for cognition. Journal of advertising 34,
3 (2005), 31–44.

[72] Divya Siddarth, Daron Acemoglu, Danielle Allen, Kate Crawford, James Evans,
Michael Jordan, and EWeyl. 2021. HowAI fails us. arXiv preprint arXiv:2201.04200
(2021).

[73] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction.

[74] Siddharth Swaroop, Zana Buçinca, Krzysztof Z. Gajos, and Finale Doshi-Velez.
2024. Accuracy-Time Tradeoffs in AI-Assisted Decision Making under Time
Pressure. In 29th International Conference on Intelligent User Interfaces (IUI ’24).
ACM.

[75] Bruce Thompson. 2007. Effect sizes, confidence intervals, and confidence intervals
for effect sizes. Psychology in the Schools 44, 5 (2007), 423–432.

[76] Kashyap Todi, Gilles Bailly, Luis Leiva, and Antti Oulasvirta. 2021. Adapting user
interfaces with model-based reinforcement learning. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. 1–13.

[77] Tracy L Tuten and Michael Bosnjak. 2001. Understanding differences in web
usage: The role of need for cognition and the five factor model of personality.
Social Behavior and Personality: an international journal 29, 4 (2001), 391–398.

[78] Helena Vasconcelos, Matthew Jörke, Madeleine Grunde-McLaughlin, Tobias
Gerstenberg, Michael S Bernstein, and Ranjay Krishna. 2023. Explanations can
reduce overreliance on ai systems during decision-making. Proceedings of the

ACM on Human-Computer Interaction 7, CSCW1 (2023), 1–38.
[79] Jennifer Irvin Vidrine, Vani Nath Simmons, and Thomas H. Brandon. 2007. Con-

struction of smoking-relevant risk perceptions among college students: The influ-
ence of need for cognition and message content. Journal of Applied Social Psychol-
ogy 37, 1 (2007), 91–114. DOI:http://dx.doi.org/10.1111/j.0021-9029.2007.00149.x

[80] Guy H Walker, Neville A Stanton, Paul M Salmon, and Daniel P Jenkins. 2008. A
review of sociotechnical systems theory: a classic concept for new command and
control paradigms. Theoretical issues in ergonomics science 9, 6 (2008), 479–499.

[81] Christopher John Cornish HellabyWatkins. 1989. Learning from delayed rewards.
(1989).

[82] Pamela Williams-Piehota, Tamera R Schneider, Linda Mowad, and Peter Salovey.
2003. Matching Health Messages to Information-Processing Styles : Need for
Cognition and Mammography Utilization. Health Communication 15, 4 (2003),
375–392.

[83] Qian Yang, Yuexing Hao, Kexin Quan, Stephen Yang, Yiran Zhao, Volodymyr
Kuleshov, and Fei Wang. 2023. Harnessing biomedical literature to calibrate
clinicians’ trust in AI decision support systems. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. 1–14.

[84] Ming Yin, Jennifer Wortman Vaughan, and Hanna Wallach. 2019. Understanding
the effect of accuracy on trust in machine learning models. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–12.

[85] Yunfeng Zhang, Q. Vera Liao, and Rachel K. E. Bellamy. 2020. Effect of Confidence
and Explanation on Accuracy and Trust Calibration in AI-Assisted Decision
Making. In Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency (FAT* ’20). Association for Computing Machinery, New York, NY,
USA, 295–305. DOI:http://dx.doi.org/10.1145/3351095.3372852

http://dx.doi.org/10.1111/j.0021-9029.2007.00149.x
http://dx.doi.org/10.1145/3351095.3372852


Towards Optimizing Human-Centric Objectives in AI-Assisted Decision-Making With Offline Reinforcement Learning Conference’17, July 2017, Washington, DC, USA

A APPENDIX
A.1 Participants’ demographics

Data Collection Study Experiment 1 Experiment 2

n 142 316 964

Data collection June 2023 July-August 2023 November 2023

Source Prolific: 142 Prolific: 281
LabintheWild: 35

Prolific: 952
LabintheWild: 12

Age M=38.09, SD=13.59 M=38.84, SD=14.9 M=42.33, SD=14.47

Gender women: 79
men: 63

women: 170
men: 135
non-binary: 7
not responded: 4

women: 493
men: 438
non-binary: 26
not responded: 7

Conditions
(high NFC, low NFC)

exploratory policy: 142
(high: 74, low: 68)

SXAI: 102 (high: 59, low: 43)
accuracy: 99 (high: 50, low: 49)
learning: 115 (high: 63, low: 52)

SXAI: 146 (high: 81, low: 65)
accuracy: 161 (high: 86, low: 75)
learning: 159 (high: 94, low: 65)
combined: 172 (high: 94, low: 78)
explanation: 160 (high: 84, low: 76)
random: 166 (high: 90, low: 76)

Table 2: Participants’ demographics and assignment to conditions in the respective study.

A.2 Experiment 2: Relationships between subjective and objective measures

R = 0.084, p = 0.054
R = 0.049, p = 0.31

R = − 0.067, p = 0.12
R = 0.054, p = 0.26

R = 0.04, p = 0.36
R = 0.056, p = 0.24

R = 0.02, p = 0.64
R = 0.078, p = 0.11

R = − 0.03, p = 0.49
R = − 0.033, p = 0.5

R = 0.028, p = 0.52
R = − 0.003, p = 0.95

R = − 0.025, p = 0.56
R = 0.075, p = 0.12

R = − 0.022, p = 0.62
R = − 0.035, p = 0.47

R = 0.015, p = 0.73
R = − 0.12, p = 0.016

R = 0.16, p = 0.00019
R = 0.099, p = 0.039

R = 0.0065, p = 0.88
R = − 0.048, p = 0.32

R = 0.28, p = 4.4e−11
R = 0.32, p = 4.7e−12
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Figure 12: Experiment 2: Relationships between subjective measures and objective measures

A.3 Distributions of actions for the optimized policies
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Figure 13: Distributions of types of AI assistance selected by the accuracy policy when the AI was correct and incorrect for
different NFC groups.
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Figure 14: Distributions of types of AI assistance selected by the learning policy when the AI was correct and incorrect for
different NFC groups.
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Figure 15: Distributions of types of AI assistance for the three policies accuracy , combined (accuracy + learning) and learning
for different NFC groups.

A.4 Experiment 2: Effect sizes for non-significant differences

high NFC low NFC

comparison Cohen’s d
95% CI

Cohen’s d
95% CI

learning-SXAI -.18
[-.48, .11]

.19
[-.15, .54]

combined-SXAI .08
[-.22, .38]

.17
[-.16, .51]

learning-random -.29
[-.58, .006]

-.02
[-.36, .31]

combined-random -.03
[-.32, .26]

-.05
[-.37, .27]

explanation-learning .07
[-.22, .37]

.22
[-.12, .55]

combined-explanation .17
[-.13, .47]

-.24
[-.56, .08]

Table 3: Effect sizes for H1b in Experiment 2.
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